The maximum incentive solutions in bargaining problems

This paper is concerned with a new approach to solutions of bargaining problems, i.e. with a rule by which participants of a nonantagonistic game select, from the set of all feasible outcomes, a ‘fair’ outcome. A rather diverse class of games is considered, and the selection in a concrete game is sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical social sciences 1992-08, Vol.24 (1), p.1-18
Hauptverfasser: Rotaŕ, Vladimir I., Smirnov, Eugene N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 1
container_title Mathematical social sciences
container_volume 24
creator Rotaŕ, Vladimir I.
Smirnov, Eugene N.
description This paper is concerned with a new approach to solutions of bargaining problems, i.e. with a rule by which participants of a nonantagonistic game select, from the set of all feasible outcomes, a ‘fair’ outcome. A rather diverse class of games is considered, and the selection in a concrete game is specified by the class under consideration. Secondly, we introduce a partial ordering on each class of games and imply that this ordering is associated with the ‘contributions of the participants to the game’. The chosen solution depends on this ordering and, in particular, is monotonic with respect to it. Under our preliminary axioms an admissible monotonic solution is not unique, and the problem is to choose a single one. The rule for choosing such a solution is based on the maximum incentive of the participant with the maximum ‘value of his contribution’ but within the framework of postulated axioms, in particular under the monotonicity condition. The latter condition implies that the solution is nontrivial. This paper is devoted to the maximum incentive solution of the so-called Income Allocation Problem and surveys some results related to the general scheme.
doi_str_mv 10.1016/0165-4896(92)90002-M
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_61298887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016548969290002M</els_id><sourcerecordid>37385868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-707e4638a62ea7e5e261b1944bd4b815633480d64ecbc31484321de739d72c7f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKv_wMWsRBejeTWPjSBFq9Dipq5DJnPbRuZRk2mx_960I13q4uSGcM654UPomuB7gol4SBrlXGlxq-mdxhjTfHaCBkRJnTNC1CkaHC3n6CLGz-SRFJMBEvMVZLX99vWmznzjoOn8FrLYVpvOt01Mb1lhw9L6xjfLbB3aooI6XqKzha0iXP3OIfp4eZ6PX_Pp--Rt_DTNXdrV5RJL4IIpKyhYCSOgghREc16UvFBkJBjjCpeCgyscI1xxRkkJkulSUicXbIhu-t60-GsDsTO1jw6qyjbQbqIRhGqllPzXyCRTIyVUMvLe6EIbY4CFWQdf27AzBJs9TbNHZfaojKbmQNPMUmzSxwKswR0zAFDbLrbObA2zlKdjl0R0ijLr99ek9WESZVZdnZoe-yZI3LYegonOQyJf-gCuM2Xr__7KDxzhk0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37385868</pqid></control><display><type>article</type><title>The maximum incentive solutions in bargaining problems</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><source>Sociological Abstracts</source><creator>Rotaŕ, Vladimir I. ; Smirnov, Eugene N.</creator><creatorcontrib>Rotaŕ, Vladimir I. ; Smirnov, Eugene N.</creatorcontrib><description>This paper is concerned with a new approach to solutions of bargaining problems, i.e. with a rule by which participants of a nonantagonistic game select, from the set of all feasible outcomes, a ‘fair’ outcome. A rather diverse class of games is considered, and the selection in a concrete game is specified by the class under consideration. Secondly, we introduce a partial ordering on each class of games and imply that this ordering is associated with the ‘contributions of the participants to the game’. The chosen solution depends on this ordering and, in particular, is monotonic with respect to it. Under our preliminary axioms an admissible monotonic solution is not unique, and the problem is to choose a single one. The rule for choosing such a solution is based on the maximum incentive of the participant with the maximum ‘value of his contribution’ but within the framework of postulated axioms, in particular under the monotonicity condition. The latter condition implies that the solution is nontrivial. This paper is devoted to the maximum incentive solution of the so-called Income Allocation Problem and surveys some results related to the general scheme.</description><identifier>ISSN: 0165-4896</identifier><identifier>EISSN: 1879-3118</identifier><identifier>DOI: 10.1016/0165-4896(92)90002-M</identifier><identifier>CODEN: MSOSDD</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bargaining ; Bargaining problem ; cooperative game ; Games ; Higher Education ; monotonic solution ; Nash solution ; Negotiation</subject><ispartof>Mathematical social sciences, 1992-08, Vol.24 (1), p.1-18</ispartof><rights>1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c489t-707e4638a62ea7e5e261b1944bd4b815633480d64ecbc31484321de739d72c7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0165-4896(92)90002-M$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,3994,27905,27906,33756,45976</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeematsoc/v_3a24_3ay_3a1992_3ai_3a1_3ap_3a1-18.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Rotaŕ, Vladimir I.</creatorcontrib><creatorcontrib>Smirnov, Eugene N.</creatorcontrib><title>The maximum incentive solutions in bargaining problems</title><title>Mathematical social sciences</title><description>This paper is concerned with a new approach to solutions of bargaining problems, i.e. with a rule by which participants of a nonantagonistic game select, from the set of all feasible outcomes, a ‘fair’ outcome. A rather diverse class of games is considered, and the selection in a concrete game is specified by the class under consideration. Secondly, we introduce a partial ordering on each class of games and imply that this ordering is associated with the ‘contributions of the participants to the game’. The chosen solution depends on this ordering and, in particular, is monotonic with respect to it. Under our preliminary axioms an admissible monotonic solution is not unique, and the problem is to choose a single one. The rule for choosing such a solution is based on the maximum incentive of the participant with the maximum ‘value of his contribution’ but within the framework of postulated axioms, in particular under the monotonicity condition. The latter condition implies that the solution is nontrivial. This paper is devoted to the maximum incentive solution of the so-called Income Allocation Problem and surveys some results related to the general scheme.</description><subject>Bargaining</subject><subject>Bargaining problem</subject><subject>cooperative game</subject><subject>Games</subject><subject>Higher Education</subject><subject>monotonic solution</subject><subject>Nash solution</subject><subject>Negotiation</subject><issn>0165-4896</issn><issn>1879-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>BHHNA</sourceid><recordid>eNqFkEtLAzEUhYMoWKv_wMWsRBejeTWPjSBFq9Dipq5DJnPbRuZRk2mx_960I13q4uSGcM654UPomuB7gol4SBrlXGlxq-mdxhjTfHaCBkRJnTNC1CkaHC3n6CLGz-SRFJMBEvMVZLX99vWmznzjoOn8FrLYVpvOt01Mb1lhw9L6xjfLbB3aooI6XqKzha0iXP3OIfp4eZ6PX_Pp--Rt_DTNXdrV5RJL4IIpKyhYCSOgghREc16UvFBkJBjjCpeCgyscI1xxRkkJkulSUicXbIhu-t60-GsDsTO1jw6qyjbQbqIRhGqllPzXyCRTIyVUMvLe6EIbY4CFWQdf27AzBJs9TbNHZfaojKbmQNPMUmzSxwKswR0zAFDbLrbObA2zlKdjl0R0ijLr99ek9WESZVZdnZoe-yZI3LYegonOQyJf-gCuM2Xr__7KDxzhk0o</recordid><startdate>19920801</startdate><enddate>19920801</enddate><creator>Rotaŕ, Vladimir I.</creator><creator>Smirnov, Eugene N.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope></search><sort><creationdate>19920801</creationdate><title>The maximum incentive solutions in bargaining problems</title><author>Rotaŕ, Vladimir I. ; Smirnov, Eugene N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-707e4638a62ea7e5e261b1944bd4b815633480d64ecbc31484321de739d72c7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Bargaining</topic><topic>Bargaining problem</topic><topic>cooperative game</topic><topic>Games</topic><topic>Higher Education</topic><topic>monotonic solution</topic><topic>Nash solution</topic><topic>Negotiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotaŕ, Vladimir I.</creatorcontrib><creatorcontrib>Smirnov, Eugene N.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Mathematical social sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotaŕ, Vladimir I.</au><au>Smirnov, Eugene N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The maximum incentive solutions in bargaining problems</atitle><jtitle>Mathematical social sciences</jtitle><date>1992-08-01</date><risdate>1992</risdate><volume>24</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0165-4896</issn><eissn>1879-3118</eissn><coden>MSOSDD</coden><abstract>This paper is concerned with a new approach to solutions of bargaining problems, i.e. with a rule by which participants of a nonantagonistic game select, from the set of all feasible outcomes, a ‘fair’ outcome. A rather diverse class of games is considered, and the selection in a concrete game is specified by the class under consideration. Secondly, we introduce a partial ordering on each class of games and imply that this ordering is associated with the ‘contributions of the participants to the game’. The chosen solution depends on this ordering and, in particular, is monotonic with respect to it. Under our preliminary axioms an admissible monotonic solution is not unique, and the problem is to choose a single one. The rule for choosing such a solution is based on the maximum incentive of the participant with the maximum ‘value of his contribution’ but within the framework of postulated axioms, in particular under the monotonicity condition. The latter condition implies that the solution is nontrivial. This paper is devoted to the maximum incentive solution of the so-called Income Allocation Problem and surveys some results related to the general scheme.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0165-4896(92)90002-M</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-4896
ispartof Mathematical social sciences, 1992-08, Vol.24 (1), p.1-18
issn 0165-4896
1879-3118
language eng
recordid cdi_proquest_miscellaneous_61298887
source RePEc; Elsevier ScienceDirect Journals; Sociological Abstracts
subjects Bargaining
Bargaining problem
cooperative game
Games
Higher Education
monotonic solution
Nash solution
Negotiation
title The maximum incentive solutions in bargaining problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20maximum%20incentive%20solutions%20in%20bargaining%20problems&rft.jtitle=Mathematical%20social%20sciences&rft.au=Rota%C5%95,%20Vladimir%20I.&rft.date=1992-08-01&rft.volume=24&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0165-4896&rft.eissn=1879-3118&rft.coden=MSOSDD&rft_id=info:doi/10.1016/0165-4896(92)90002-M&rft_dat=%3Cproquest_cross%3E37385868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=37385868&rft_id=info:pmid/&rft_els_id=016548969290002M&rfr_iscdi=true