On how not to make inferences about measurement error

The growing interest in causal models with unmeasured variables & in using information about measured variables to infer relationships involving unmeasured variables ignores fundamental reasons for considering this approach untenable. Specific attention is given to an example that illustrates th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality & quantity 1980-08, Vol.14 (4), p.503-510
1. Verfasser: Hoppe, Hans-Hermann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue 4
container_start_page 503
container_title Quality & quantity
container_volume 14
creator Hoppe, Hans-Hermann
description The growing interest in causal models with unmeasured variables & in using information about measured variables to infer relationships involving unmeasured variables ignores fundamental reasons for considering this approach untenable. Specific attention is given to an example that illustrates the existence of certain untenable inferences. It is assumed in this example, drawn from path analytic methods, that certain other variables are measured perfectly & that they have or do not have certain empirical relationships. Further, it is conceptually inappropriate to consider 'measurement error,' a concept referring to incorrect measurement of one variable, to exist when one variable is used to assign a value to another that is independently defined. Further, regularities cannot be varied for an infinite population, & infinite populations are involved in any universal theory. If observed & predicted variables differ, it should never be assumed that the theory is error-free. 1 Figure. W. H. Stoddard.
doi_str_mv 10.1007/BF00184716
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_61064517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>61064517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-840ba3e4227ec09799520c63e034fec53818027109ed3d80f19a4424042bc8293</originalsourceid><addsrcrecordid>eNpFkM1KxDAURoMoOI5ufIKsXAjVm78mWergqDAwG12HNHOL1bYZkxTx7a2M4OrbHD44h5BLBjcMQN_erwGYkZrVR2TBlBaVNlIdkwWAEJViWp-Ss5zfZwpA6gVR25G-xS86xkJLpIP_QNqNLSYcA2bqmzgVOqDPU8IBx0IxpZjOyUnr-4wXf7skr-uHl9VTtdk-Pq_uNlXgnJXKSGi8QMm5xgBWW6s4hFogCNliUMIwA1wzsLgTOwMts15KLkHyJhhuxZJcHX73KX5OmIsbuhyw7_2IccquZlDL2WoGrw9gSDHnhK3bp27w6dsxcL9l3H8Z8QPYRVMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>61064517</pqid></control><display><type>article</type><title>On how not to make inferences about measurement error</title><source>Sociological Abstracts</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hoppe, Hans-Hermann</creator><creatorcontrib>Hoppe, Hans-Hermann</creatorcontrib><description>The growing interest in causal models with unmeasured variables &amp; in using information about measured variables to infer relationships involving unmeasured variables ignores fundamental reasons for considering this approach untenable. Specific attention is given to an example that illustrates the existence of certain untenable inferences. It is assumed in this example, drawn from path analytic methods, that certain other variables are measured perfectly &amp; that they have or do not have certain empirical relationships. Further, it is conceptually inappropriate to consider 'measurement error,' a concept referring to incorrect measurement of one variable, to exist when one variable is used to assign a value to another that is independently defined. Further, regularities cannot be varied for an infinite population, &amp; infinite populations are involved in any universal theory. If observed &amp; predicted variables differ, it should never be assumed that the theory is error-free. 1 Figure. W. H. Stoddard.</description><identifier>ISSN: 0033-5177</identifier><identifier>EISSN: 1573-7845</identifier><identifier>DOI: 10.1007/BF00184716</identifier><identifier>CODEN: QQEJAV</identifier><language>eng</language><subject>Cause/Causes/Causal/Causation ; Error/Errors ; Measure/Measures/Measuring/ Measurement ; Model/Modeling/Models</subject><ispartof>Quality &amp; quantity, 1980-08, Vol.14 (4), p.503-510</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,33774</link.rule.ids></links><search><creatorcontrib>Hoppe, Hans-Hermann</creatorcontrib><title>On how not to make inferences about measurement error</title><title>Quality &amp; quantity</title><description>The growing interest in causal models with unmeasured variables &amp; in using information about measured variables to infer relationships involving unmeasured variables ignores fundamental reasons for considering this approach untenable. Specific attention is given to an example that illustrates the existence of certain untenable inferences. It is assumed in this example, drawn from path analytic methods, that certain other variables are measured perfectly &amp; that they have or do not have certain empirical relationships. Further, it is conceptually inappropriate to consider 'measurement error,' a concept referring to incorrect measurement of one variable, to exist when one variable is used to assign a value to another that is independently defined. Further, regularities cannot be varied for an infinite population, &amp; infinite populations are involved in any universal theory. If observed &amp; predicted variables differ, it should never be assumed that the theory is error-free. 1 Figure. W. H. Stoddard.</description><subject>Cause/Causes/Causal/Causation</subject><subject>Error/Errors</subject><subject>Measure/Measures/Measuring/ Measurement</subject><subject>Model/Modeling/Models</subject><issn>0033-5177</issn><issn>1573-7845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNpFkM1KxDAURoMoOI5ufIKsXAjVm78mWergqDAwG12HNHOL1bYZkxTx7a2M4OrbHD44h5BLBjcMQN_erwGYkZrVR2TBlBaVNlIdkwWAEJViWp-Ss5zfZwpA6gVR25G-xS86xkJLpIP_QNqNLSYcA2bqmzgVOqDPU8IBx0IxpZjOyUnr-4wXf7skr-uHl9VTtdk-Pq_uNlXgnJXKSGi8QMm5xgBWW6s4hFogCNliUMIwA1wzsLgTOwMts15KLkHyJhhuxZJcHX73KX5OmIsbuhyw7_2IccquZlDL2WoGrw9gSDHnhK3bp27w6dsxcL9l3H8Z8QPYRVMo</recordid><startdate>198008</startdate><enddate>198008</enddate><creator>Hoppe, Hans-Hermann</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope></search><sort><creationdate>198008</creationdate><title>On how not to make inferences about measurement error</title><author>Hoppe, Hans-Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-840ba3e4227ec09799520c63e034fec53818027109ed3d80f19a4424042bc8293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Cause/Causes/Causal/Causation</topic><topic>Error/Errors</topic><topic>Measure/Measures/Measuring/ Measurement</topic><topic>Model/Modeling/Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoppe, Hans-Hermann</creatorcontrib><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Quality &amp; quantity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoppe, Hans-Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On how not to make inferences about measurement error</atitle><jtitle>Quality &amp; quantity</jtitle><date>1980-08</date><risdate>1980</risdate><volume>14</volume><issue>4</issue><spage>503</spage><epage>510</epage><pages>503-510</pages><issn>0033-5177</issn><eissn>1573-7845</eissn><coden>QQEJAV</coden><abstract>The growing interest in causal models with unmeasured variables &amp; in using information about measured variables to infer relationships involving unmeasured variables ignores fundamental reasons for considering this approach untenable. Specific attention is given to an example that illustrates the existence of certain untenable inferences. It is assumed in this example, drawn from path analytic methods, that certain other variables are measured perfectly &amp; that they have or do not have certain empirical relationships. Further, it is conceptually inappropriate to consider 'measurement error,' a concept referring to incorrect measurement of one variable, to exist when one variable is used to assign a value to another that is independently defined. Further, regularities cannot be varied for an infinite population, &amp; infinite populations are involved in any universal theory. If observed &amp; predicted variables differ, it should never be assumed that the theory is error-free. 1 Figure. W. H. Stoddard.</abstract><doi>10.1007/BF00184716</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-5177
ispartof Quality & quantity, 1980-08, Vol.14 (4), p.503-510
issn 0033-5177
1573-7845
language eng
recordid cdi_proquest_miscellaneous_61064517
source Sociological Abstracts; SpringerLink Journals - AutoHoldings
subjects Cause/Causes/Causal/Causation
Error/Errors
Measure/Measures/Measuring/ Measurement
Model/Modeling/Models
title On how not to make inferences about measurement error
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20how%20not%20to%20make%20inferences%20about%20measurement%20error&rft.jtitle=Quality%20&%20quantity&rft.au=Hoppe,%20Hans-Hermann&rft.date=1980-08&rft.volume=14&rft.issue=4&rft.spage=503&rft.epage=510&rft.pages=503-510&rft.issn=0033-5177&rft.eissn=1573-7845&rft.coden=QQEJAV&rft_id=info:doi/10.1007/BF00184716&rft_dat=%3Cproquest_cross%3E61064517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=61064517&rft_id=info:pmid/&rfr_iscdi=true