Structural similarity, semigroups and idempotents

Derived from the notion of structural equivalence proposed by Francois Lorrain & Harrison C. White (see SA 20:3/72F4686), it is proposed that structural equivalence can be termed an "idempotent," or an element "r" of a semigroup S composed of the observed relations among indi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social networks 1983-06, Vol.5 (2), p.157-172
1. Verfasser: Boyd, John Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 2
container_start_page 157
container_title Social networks
container_volume 5
creator Boyd, John Paul
description Derived from the notion of structural equivalence proposed by Francois Lorrain & Harrison C. White (see SA 20:3/72F4686), it is proposed that structural equivalence can be termed an "idempotent," or an element "r" of a semigroup S composed of the observed relations among individuals; this algebraic approach simplifies the procedures used in network analysis. Idempotents are transitive (although the reverse is not necessarily true). Also presented is an algorithm for figuring out an idempotent associated with any given relation. The procedure is supported by eight theorems demonstrating graphs, the notion of structural similarity, & other situations. 13 References. D. Dunseath.
doi_str_mv 10.1016/0378-8733(83)90023-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_61058304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0378873383900230</els_id><sourcerecordid>61058304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-14339a6efd6f26fab74a7d17569fa81a7a805b40c11f068614079d3e8ed94e1f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-Aw8FQRSsZppuMr0IsvgFCx7Uc8i2E8nSjzVJhf33tq548LCngeHNg3mMnQK_Bg7yhguFKSohLlBcFpxnIuV7bAKoijQDgH02-UMO2VEIK865VIATBq_R92XsvamT4BpXG-_i5ioJ1LgP3_XrkJi2SlxFzbqL1MZwzA6sqQOd_M4pe3-4f5s_pYuXx-f53SItRYExhVyIwkiylbSZtGapcqMqUDNZWINglEE-W-a8BLBcooScq6IShFQVOYEVU3a-9a5999lTiLpxoaS6Ni11fdAS-AwFzwfwYicISoJUCBIG9Owfuup63w5vaMiKHBEFjsJ8S5W-C8GT1WvvGuM3Grgeg-uxph5rahT6J_iwmrLb7RkNVb4ceR1KR21JlfNURl11brfgG3y7hZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1294888384</pqid></control><display><type>article</type><title>Structural similarity, semigroups and idempotents</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Sociological Abstracts</source><source>Periodicals Index Online</source><creator>Boyd, John Paul</creator><creatorcontrib>Boyd, John Paul</creatorcontrib><description>Derived from the notion of structural equivalence proposed by Francois Lorrain &amp; Harrison C. White (see SA 20:3/72F4686), it is proposed that structural equivalence can be termed an "idempotent," or an element "r" of a semigroup S composed of the observed relations among individuals; this algebraic approach simplifies the procedures used in network analysis. Idempotents are transitive (although the reverse is not necessarily true). Also presented is an algorithm for figuring out an idempotent associated with any given relation. The procedure is supported by eight theorems demonstrating graphs, the notion of structural similarity, &amp; other situations. 13 References. D. Dunseath.</description><identifier>ISSN: 0378-8733</identifier><identifier>EISSN: 1879-2111</identifier><identifier>DOI: 10.1016/0378-8733(83)90023-0</identifier><identifier>CODEN: SONED4</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Social network/Social networks/Social networking</subject><ispartof>Social networks, 1983-06, Vol.5 (2), p.157-172</ispartof><rights>1983</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-14339a6efd6f26fab74a7d17569fa81a7a805b40c11f068614079d3e8ed94e1f3</citedby><cites>FETCH-LOGICAL-c398t-14339a6efd6f26fab74a7d17569fa81a7a805b40c11f068614079d3e8ed94e1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0378873383900230$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27846,27901,27902,33752,65306</link.rule.ids></links><search><creatorcontrib>Boyd, John Paul</creatorcontrib><title>Structural similarity, semigroups and idempotents</title><title>Social networks</title><description>Derived from the notion of structural equivalence proposed by Francois Lorrain &amp; Harrison C. White (see SA 20:3/72F4686), it is proposed that structural equivalence can be termed an "idempotent," or an element "r" of a semigroup S composed of the observed relations among individuals; this algebraic approach simplifies the procedures used in network analysis. Idempotents are transitive (although the reverse is not necessarily true). Also presented is an algorithm for figuring out an idempotent associated with any given relation. The procedure is supported by eight theorems demonstrating graphs, the notion of structural similarity, &amp; other situations. 13 References. D. Dunseath.</description><subject>Social network/Social networks/Social networking</subject><issn>0378-8733</issn><issn>1879-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>BHHNA</sourceid><recordid>eNp9kE1LxDAQQIMouK7-Aw8FQRSsZppuMr0IsvgFCx7Uc8i2E8nSjzVJhf33tq548LCngeHNg3mMnQK_Bg7yhguFKSohLlBcFpxnIuV7bAKoijQDgH02-UMO2VEIK865VIATBq_R92XsvamT4BpXG-_i5ioJ1LgP3_XrkJi2SlxFzbqL1MZwzA6sqQOd_M4pe3-4f5s_pYuXx-f53SItRYExhVyIwkiylbSZtGapcqMqUDNZWINglEE-W-a8BLBcooScq6IShFQVOYEVU3a-9a5999lTiLpxoaS6Ni11fdAS-AwFzwfwYicISoJUCBIG9Owfuup63w5vaMiKHBEFjsJ8S5W-C8GT1WvvGuM3Grgeg-uxph5rahT6J_iwmrLb7RkNVb4ceR1KR21JlfNURl11brfgG3y7hZI</recordid><startdate>19830601</startdate><enddate>19830601</enddate><creator>Boyd, John Paul</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JHMDA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope></search><sort><creationdate>19830601</creationdate><title>Structural similarity, semigroups and idempotents</title><author>Boyd, John Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-14339a6efd6f26fab74a7d17569fa81a7a805b40c11f068614079d3e8ed94e1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Social network/Social networks/Social networking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyd, John Paul</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 31</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyd, John Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural similarity, semigroups and idempotents</atitle><jtitle>Social networks</jtitle><date>1983-06-01</date><risdate>1983</risdate><volume>5</volume><issue>2</issue><spage>157</spage><epage>172</epage><pages>157-172</pages><issn>0378-8733</issn><eissn>1879-2111</eissn><coden>SONED4</coden><abstract>Derived from the notion of structural equivalence proposed by Francois Lorrain &amp; Harrison C. White (see SA 20:3/72F4686), it is proposed that structural equivalence can be termed an "idempotent," or an element "r" of a semigroup S composed of the observed relations among individuals; this algebraic approach simplifies the procedures used in network analysis. Idempotents are transitive (although the reverse is not necessarily true). Also presented is an algorithm for figuring out an idempotent associated with any given relation. The procedure is supported by eight theorems demonstrating graphs, the notion of structural similarity, &amp; other situations. 13 References. D. Dunseath.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/0378-8733(83)90023-0</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-8733
ispartof Social networks, 1983-06, Vol.5 (2), p.157-172
issn 0378-8733
1879-2111
language eng
recordid cdi_proquest_miscellaneous_61058304
source ScienceDirect Journals (5 years ago - present); Sociological Abstracts; Periodicals Index Online
subjects Social network/Social networks/Social networking
title Structural similarity, semigroups and idempotents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20similarity,%20semigroups%20and%20idempotents&rft.jtitle=Social%20networks&rft.au=Boyd,%20John%20Paul&rft.date=1983-06-01&rft.volume=5&rft.issue=2&rft.spage=157&rft.epage=172&rft.pages=157-172&rft.issn=0378-8733&rft.eissn=1879-2111&rft.coden=SONED4&rft_id=info:doi/10.1016/0378-8733(83)90023-0&rft_dat=%3Cproquest_cross%3E61058304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1294888384&rft_id=info:pmid/&rft_els_id=0378873383900230&rfr_iscdi=true