Structural similarity, semigroups and idempotents
Derived from the notion of structural equivalence proposed by Francois Lorrain & Harrison C. White (see SA 20:3/72F4686), it is proposed that structural equivalence can be termed an "idempotent," or an element "r" of a semigroup S composed of the observed relations among indi...
Gespeichert in:
Veröffentlicht in: | Social networks 1983-06, Vol.5 (2), p.157-172 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 2 |
container_start_page | 157 |
container_title | Social networks |
container_volume | 5 |
creator | Boyd, John Paul |
description | Derived from the notion of structural equivalence proposed by Francois Lorrain & Harrison C. White (see SA 20:3/72F4686), it is proposed that structural equivalence can be termed an "idempotent," or an element "r" of a semigroup S composed of the observed relations among individuals; this algebraic approach simplifies the procedures used in network analysis. Idempotents are transitive (although the reverse is not necessarily true). Also presented is an algorithm for figuring out an idempotent associated with any given relation. The procedure is supported by eight theorems demonstrating graphs, the notion of structural similarity, & other situations. 13 References. D. Dunseath. |
doi_str_mv | 10.1016/0378-8733(83)90023-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_61058304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0378873383900230</els_id><sourcerecordid>61058304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-14339a6efd6f26fab74a7d17569fa81a7a805b40c11f068614079d3e8ed94e1f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-Aw8FQRSsZppuMr0IsvgFCx7Uc8i2E8nSjzVJhf33tq548LCngeHNg3mMnQK_Bg7yhguFKSohLlBcFpxnIuV7bAKoijQDgH02-UMO2VEIK865VIATBq_R92XsvamT4BpXG-_i5ioJ1LgP3_XrkJi2SlxFzbqL1MZwzA6sqQOd_M4pe3-4f5s_pYuXx-f53SItRYExhVyIwkiylbSZtGapcqMqUDNZWINglEE-W-a8BLBcooScq6IShFQVOYEVU3a-9a5999lTiLpxoaS6Ni11fdAS-AwFzwfwYicISoJUCBIG9Owfuup63w5vaMiKHBEFjsJ8S5W-C8GT1WvvGuM3Grgeg-uxph5rahT6J_iwmrLb7RkNVb4ceR1KR21JlfNURl11brfgG3y7hZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1294888384</pqid></control><display><type>article</type><title>Structural similarity, semigroups and idempotents</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Sociological Abstracts</source><source>Periodicals Index Online</source><creator>Boyd, John Paul</creator><creatorcontrib>Boyd, John Paul</creatorcontrib><description>Derived from the notion of structural equivalence proposed by Francois Lorrain & Harrison C. White (see SA 20:3/72F4686), it is proposed that structural equivalence can be termed an "idempotent," or an element "r" of a semigroup S composed of the observed relations among individuals; this algebraic approach simplifies the procedures used in network analysis. Idempotents are transitive (although the reverse is not necessarily true). Also presented is an algorithm for figuring out an idempotent associated with any given relation. The procedure is supported by eight theorems demonstrating graphs, the notion of structural similarity, & other situations. 13 References. D. Dunseath.</description><identifier>ISSN: 0378-8733</identifier><identifier>EISSN: 1879-2111</identifier><identifier>DOI: 10.1016/0378-8733(83)90023-0</identifier><identifier>CODEN: SONED4</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Social network/Social networks/Social networking</subject><ispartof>Social networks, 1983-06, Vol.5 (2), p.157-172</ispartof><rights>1983</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-14339a6efd6f26fab74a7d17569fa81a7a805b40c11f068614079d3e8ed94e1f3</citedby><cites>FETCH-LOGICAL-c398t-14339a6efd6f26fab74a7d17569fa81a7a805b40c11f068614079d3e8ed94e1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0378873383900230$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27846,27901,27902,33752,65306</link.rule.ids></links><search><creatorcontrib>Boyd, John Paul</creatorcontrib><title>Structural similarity, semigroups and idempotents</title><title>Social networks</title><description>Derived from the notion of structural equivalence proposed by Francois Lorrain & Harrison C. White (see SA 20:3/72F4686), it is proposed that structural equivalence can be termed an "idempotent," or an element "r" of a semigroup S composed of the observed relations among individuals; this algebraic approach simplifies the procedures used in network analysis. Idempotents are transitive (although the reverse is not necessarily true). Also presented is an algorithm for figuring out an idempotent associated with any given relation. The procedure is supported by eight theorems demonstrating graphs, the notion of structural similarity, & other situations. 13 References. D. Dunseath.</description><subject>Social network/Social networks/Social networking</subject><issn>0378-8733</issn><issn>1879-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>BHHNA</sourceid><recordid>eNp9kE1LxDAQQIMouK7-Aw8FQRSsZppuMr0IsvgFCx7Uc8i2E8nSjzVJhf33tq548LCngeHNg3mMnQK_Bg7yhguFKSohLlBcFpxnIuV7bAKoijQDgH02-UMO2VEIK865VIATBq_R92XsvamT4BpXG-_i5ioJ1LgP3_XrkJi2SlxFzbqL1MZwzA6sqQOd_M4pe3-4f5s_pYuXx-f53SItRYExhVyIwkiylbSZtGapcqMqUDNZWINglEE-W-a8BLBcooScq6IShFQVOYEVU3a-9a5999lTiLpxoaS6Ni11fdAS-AwFzwfwYicISoJUCBIG9Owfuup63w5vaMiKHBEFjsJ8S5W-C8GT1WvvGuM3Grgeg-uxph5rahT6J_iwmrLb7RkNVb4ceR1KR21JlfNURl11brfgG3y7hZI</recordid><startdate>19830601</startdate><enddate>19830601</enddate><creator>Boyd, John Paul</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JHMDA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope></search><sort><creationdate>19830601</creationdate><title>Structural similarity, semigroups and idempotents</title><author>Boyd, John Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-14339a6efd6f26fab74a7d17569fa81a7a805b40c11f068614079d3e8ed94e1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Social network/Social networks/Social networking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyd, John Paul</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 31</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyd, John Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural similarity, semigroups and idempotents</atitle><jtitle>Social networks</jtitle><date>1983-06-01</date><risdate>1983</risdate><volume>5</volume><issue>2</issue><spage>157</spage><epage>172</epage><pages>157-172</pages><issn>0378-8733</issn><eissn>1879-2111</eissn><coden>SONED4</coden><abstract>Derived from the notion of structural equivalence proposed by Francois Lorrain & Harrison C. White (see SA 20:3/72F4686), it is proposed that structural equivalence can be termed an "idempotent," or an element "r" of a semigroup S composed of the observed relations among individuals; this algebraic approach simplifies the procedures used in network analysis. Idempotents are transitive (although the reverse is not necessarily true). Also presented is an algorithm for figuring out an idempotent associated with any given relation. The procedure is supported by eight theorems demonstrating graphs, the notion of structural similarity, & other situations. 13 References. D. Dunseath.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/0378-8733(83)90023-0</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-8733 |
ispartof | Social networks, 1983-06, Vol.5 (2), p.157-172 |
issn | 0378-8733 1879-2111 |
language | eng |
recordid | cdi_proquest_miscellaneous_61058304 |
source | ScienceDirect Journals (5 years ago - present); Sociological Abstracts; Periodicals Index Online |
subjects | Social network/Social networks/Social networking |
title | Structural similarity, semigroups and idempotents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20similarity,%20semigroups%20and%20idempotents&rft.jtitle=Social%20networks&rft.au=Boyd,%20John%20Paul&rft.date=1983-06-01&rft.volume=5&rft.issue=2&rft.spage=157&rft.epage=172&rft.pages=157-172&rft.issn=0378-8733&rft.eissn=1879-2111&rft.coden=SONED4&rft_id=info:doi/10.1016/0378-8733(83)90023-0&rft_dat=%3Cproquest_cross%3E61058304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1294888384&rft_id=info:pmid/&rft_els_id=0378873383900230&rfr_iscdi=true |