Localized autocorrelation diagnostic statistic (LADS) for spatial models: Conceptualization, utilization, and computation

This paper proposes a regression diagnostic, the localized autocorrelation diagnostic statistic (LADS), that differs from traditional autocorrelation diagnostics in that: (1) it is concerned with localized occurrences of spatial autocorrelation; (2) each localized occurrence is assumed to result fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regional science and urban economics 1992-09, Vol.22 (3), p.333-346
Hauptverfasser: Nass, Clifford, Garfinkle, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 3
container_start_page 333
container_title Regional science and urban economics
container_volume 22
creator Nass, Clifford
Garfinkle, David
description This paper proposes a regression diagnostic, the localized autocorrelation diagnostic statistic (LADS), that differs from traditional autocorrelation diagnostics in that: (1) it is concerned with localized occurrences of spatial autocorrelation; (2) each localized occurrence is assumed to result from a potentially distinct problem in model specification; and (3) problems are deduced post hoc from the particular geographic units implicated by the statistic. LADS ( N × N, E, C) is the probability that in a regression model with N spatial units, a contiguous block of C or more residuals among the E most extreme, same-signed residuals occurred by chance. LADS can help identify omitted independent variables, distinct regimes, and error heteroskedasticity. Two algorithms for the computation of LADS and various LADS( N, E, C)s for state-level models of the United States are provided.
doi_str_mv 10.1016/0166-0462(92)90033-W
format Article
fullrecord <record><control><sourceid>proquest_repec</sourceid><recordid>TN_cdi_proquest_miscellaneous_60907192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016604629290033W</els_id><sourcerecordid>37410471</sourcerecordid><originalsourceid>FETCH-LOGICAL-e454t-2a8ccb227be3c90f26141494e00b4b0a0e0172a69b3b212b8433200d4369bdf23</originalsourceid><addsrcrecordid>eNqFkk-LFDEQxYMoOK5-Aw9BQXZhWyuV2D3xICzj-o8BDyp7DOl0zZqlu9Mm6YXx05ueEQVBPLxU5fHjQVLF2GMBzwWI-kVRXYGq8VTjmQaQsrq6w1Zi3egKJazvstVv5D57kNINQDFQrth-G5zt_Q_quJ1zcCFG6m32YeSdt9djSNk7nnKxDt3p9uLN5zO-C5GnqZi250PoqE-v-CaMjqY8L3GHhHM-Z__nYseOuzBMcz4YD9m9ne0TPfpVT9jXt5dfNu-r7ad3HzYX24rUS5UrtGvnWsSmJek07LAWSiitCKBVLVggEA3aWreyRYHtWkmJAJ2Sxep2KE_Ys2PuFMP3mVI2g0-O-t6OFOZkatDQCP1_UDZKgGpEAZ_8Bd6EOY7lEQaX71YIS9rTf0ECNQpVqKZQH49UpImcmaIfbNwbIop0TS6YWyMtYjn2RULrpfVFsmhaqiydqs23PJSw18ewMg669RRNcp7KUDofyWXTBW8EmGVlzLIPZtkHUyIPK2Ou5E90A7Pb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292144207</pqid></control><display><type>article</type><title>Localized autocorrelation diagnostic statistic (LADS) for spatial models: Conceptualization, utilization, and computation</title><source>RePEc</source><source>Worldwide Political Science Abstracts</source><source>Periodicals Index Online</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nass, Clifford ; Garfinkle, David</creator><creatorcontrib>Nass, Clifford ; Garfinkle, David</creatorcontrib><description>This paper proposes a regression diagnostic, the localized autocorrelation diagnostic statistic (LADS), that differs from traditional autocorrelation diagnostics in that: (1) it is concerned with localized occurrences of spatial autocorrelation; (2) each localized occurrence is assumed to result from a potentially distinct problem in model specification; and (3) problems are deduced post hoc from the particular geographic units implicated by the statistic. LADS ( N × N, E, C) is the probability that in a regression model with N spatial units, a contiguous block of C or more residuals among the E most extreme, same-signed residuals occurred by chance. LADS can help identify omitted independent variables, distinct regimes, and error heteroskedasticity. Two algorithms for the computation of LADS and various LADS( N, E, C)s for state-level models of the United States are provided.</description><identifier>ISSN: 0166-0462</identifier><identifier>EISSN: 1879-2308</identifier><identifier>DOI: 10.1016/0166-0462(92)90033-W</identifier><identifier>CODEN: RGUEA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Economic models ; Economic Theory ; Regression analysis ; Spatial models ; Statistics ; Time series ; U.S.A</subject><ispartof>Regional science and urban economics, 1992-09, Vol.22 (3), p.333-346</ispartof><rights>1992</rights><rights>Copyright Elsevier Sequoia S.A. Sep 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0166-0462(92)90033-W$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,3996,27858,27913,27914,45984</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeregeco/v_3a22_3ay_3a1992_3ai_3a3_3ap_3a333-346.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Nass, Clifford</creatorcontrib><creatorcontrib>Garfinkle, David</creatorcontrib><title>Localized autocorrelation diagnostic statistic (LADS) for spatial models: Conceptualization, utilization, and computation</title><title>Regional science and urban economics</title><description>This paper proposes a regression diagnostic, the localized autocorrelation diagnostic statistic (LADS), that differs from traditional autocorrelation diagnostics in that: (1) it is concerned with localized occurrences of spatial autocorrelation; (2) each localized occurrence is assumed to result from a potentially distinct problem in model specification; and (3) problems are deduced post hoc from the particular geographic units implicated by the statistic. LADS ( N × N, E, C) is the probability that in a regression model with N spatial units, a contiguous block of C or more residuals among the E most extreme, same-signed residuals occurred by chance. LADS can help identify omitted independent variables, distinct regimes, and error heteroskedasticity. Two algorithms for the computation of LADS and various LADS( N, E, C)s for state-level models of the United States are provided.</description><subject>Algorithms</subject><subject>Economic models</subject><subject>Economic Theory</subject><subject>Regression analysis</subject><subject>Spatial models</subject><subject>Statistics</subject><subject>Time series</subject><subject>U.S.A</subject><issn>0166-0462</issn><issn>1879-2308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>K30</sourceid><sourceid>7UB</sourceid><recordid>eNqFkk-LFDEQxYMoOK5-Aw9BQXZhWyuV2D3xICzj-o8BDyp7DOl0zZqlu9Mm6YXx05ueEQVBPLxU5fHjQVLF2GMBzwWI-kVRXYGq8VTjmQaQsrq6w1Zi3egKJazvstVv5D57kNINQDFQrth-G5zt_Q_quJ1zcCFG6m32YeSdt9djSNk7nnKxDt3p9uLN5zO-C5GnqZi250PoqE-v-CaMjqY8L3GHhHM-Z__nYseOuzBMcz4YD9m9ne0TPfpVT9jXt5dfNu-r7ad3HzYX24rUS5UrtGvnWsSmJek07LAWSiitCKBVLVggEA3aWreyRYHtWkmJAJ2Sxep2KE_Ys2PuFMP3mVI2g0-O-t6OFOZkatDQCP1_UDZKgGpEAZ_8Bd6EOY7lEQaX71YIS9rTf0ECNQpVqKZQH49UpImcmaIfbNwbIop0TS6YWyMtYjn2RULrpfVFsmhaqiydqs23PJSw18ewMg669RRNcp7KUDofyWXTBW8EmGVlzLIPZtkHUyIPK2Ou5E90A7Pb</recordid><startdate>19920901</startdate><enddate>19920901</enddate><creator>Nass, Clifford</creator><creator>Garfinkle, David</creator><general>Elsevier B.V</general><general>Elsevier</general><general>North-Holland</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>JQCIK</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7UB</scope></search><sort><creationdate>19920901</creationdate><title>Localized autocorrelation diagnostic statistic (LADS) for spatial models: Conceptualization, utilization, and computation</title><author>Nass, Clifford ; Garfinkle, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e454t-2a8ccb227be3c90f26141494e00b4b0a0e0172a69b3b212b8433200d4369bdf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Algorithms</topic><topic>Economic models</topic><topic>Economic Theory</topic><topic>Regression analysis</topic><topic>Spatial models</topic><topic>Statistics</topic><topic>Time series</topic><topic>U.S.A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nass, Clifford</creatorcontrib><creatorcontrib>Garfinkle, David</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>Periodicals Index Online Segment 33</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Regional science and urban economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nass, Clifford</au><au>Garfinkle, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized autocorrelation diagnostic statistic (LADS) for spatial models: Conceptualization, utilization, and computation</atitle><jtitle>Regional science and urban economics</jtitle><date>1992-09-01</date><risdate>1992</risdate><volume>22</volume><issue>3</issue><spage>333</spage><epage>346</epage><pages>333-346</pages><issn>0166-0462</issn><eissn>1879-2308</eissn><coden>RGUEA3</coden><abstract>This paper proposes a regression diagnostic, the localized autocorrelation diagnostic statistic (LADS), that differs from traditional autocorrelation diagnostics in that: (1) it is concerned with localized occurrences of spatial autocorrelation; (2) each localized occurrence is assumed to result from a potentially distinct problem in model specification; and (3) problems are deduced post hoc from the particular geographic units implicated by the statistic. LADS ( N × N, E, C) is the probability that in a regression model with N spatial units, a contiguous block of C or more residuals among the E most extreme, same-signed residuals occurred by chance. LADS can help identify omitted independent variables, distinct regimes, and error heteroskedasticity. Two algorithms for the computation of LADS and various LADS( N, E, C)s for state-level models of the United States are provided.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0166-0462(92)90033-W</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-0462
ispartof Regional science and urban economics, 1992-09, Vol.22 (3), p.333-346
issn 0166-0462
1879-2308
language eng
recordid cdi_proquest_miscellaneous_60907192
source RePEc; Worldwide Political Science Abstracts; Periodicals Index Online; ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Economic models
Economic Theory
Regression analysis
Spatial models
Statistics
Time series
U.S.A
title Localized autocorrelation diagnostic statistic (LADS) for spatial models: Conceptualization, utilization, and computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20autocorrelation%20diagnostic%20statistic%20(LADS)%20for%20spatial%20models:%20Conceptualization,%20utilization,%20and%20computation&rft.jtitle=Regional%20science%20and%20urban%20economics&rft.au=Nass,%20Clifford&rft.date=1992-09-01&rft.volume=22&rft.issue=3&rft.spage=333&rft.epage=346&rft.pages=333-346&rft.issn=0166-0462&rft.eissn=1879-2308&rft.coden=RGUEA3&rft_id=info:doi/10.1016/0166-0462(92)90033-W&rft_dat=%3Cproquest_repec%3E37410471%3C/proquest_repec%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292144207&rft_id=info:pmid/&rft_els_id=016604629290033W&rfr_iscdi=true