Improving data quality for performance measures: results from a GAO study of verification and validation
The Government Performance and Results Act, and many other efforts to initiate performance reporting, bring attention to the characteristics and quality of the data underlying performance measures. The study summarized here looked for examples of useful practices that federal agencies are developing...
Gespeichert in:
Veröffentlicht in: | Evaluation and program planning 2001-02, Vol.24 (1), p.83-94 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 83 |
container_title | Evaluation and program planning |
container_volume | 24 |
creator | Divorski, S. Scheirer, M.A. |
description | The Government Performance and Results Act, and many other efforts to initiate performance reporting, bring attention to the characteristics and quality of the data underlying performance measures. The study summarized here looked for examples of useful practices that federal agencies are developing to ‘verify and validate’ their performance information, as required by the Results Act. We developed a framework to organize our findings. The framework contains four major approaches to assess and improve data quality: (1) fostering organizational commitment and capacity for data quality; (2) assessing the quality of existing data; (3) responding to data limitations identified during assessments of data quality; and (4) building quality into the development of performance data. Specific strategies within each approach are illustrated with examples from the six agencies we studied. |
doi_str_mv | 10.1016/S0149-7189(00)00049-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_60605483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ631780</ericid><els_id>S0149718900000495</els_id><sourcerecordid>60605483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-d60cd21dd75477a355101f198f3043a3fdff763b0dd2a88359e50b94440505d53</originalsourceid><addsrcrecordid>eNqFUctOHTEMnQVIpbR_AFJWVVlc6twk8-gGIcSrQmLRso5C4kDQvEgyI92_x3MvgmUjOSeO7eP4pCiOOZxy4OWvv8Bls6p43fwEOAEA8tRecfBx_aX4mtLLNlDJg-L5thvjMIf-iTmTDXudTBvyhvkhshEjQWd6i6xDk6aI6TejbWpzYj4OHTPs-vyepTy5DRs8mzEGH6zJYeiZ6R2bic1t3W_Fvjdtwu_veFg8XF3-u7hZ3d1f316c362sXMu8ciVYt-bOVUpWlRFK0VieN7UXIIUR3nlfleIRnFubuhaqQQWPjZQSFCinxGHxY8dLY71OmLLuQrLYtqbHYUq6hBKUrAUlql2ijUNKEb0eY-hM3GgOetFSb7XUi2gaQG8l00uDm11dxBHtRxHSGkfqomctzFrStlkOAJwgkC04ktVCN1I_546ojnZUJNsn0-WfUvCqBgqfvYdJrzlg1MkGpN9wIaLN2g3hP299A8WCoCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>60605483</pqid></control><display><type>article</type><title>Improving data quality for performance measures: results from a GAO study of verification and validation</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><source>Worldwide Political Science Abstracts</source><creator>Divorski, S. ; Scheirer, M.A.</creator><creatorcontrib>Divorski, S. ; Scheirer, M.A.</creatorcontrib><description>The Government Performance and Results Act, and many other efforts to initiate performance reporting, bring attention to the characteristics and quality of the data underlying performance measures. The study summarized here looked for examples of useful practices that federal agencies are developing to ‘verify and validate’ their performance information, as required by the Results Act. We developed a framework to organize our findings. The framework contains four major approaches to assess and improve data quality: (1) fostering organizational commitment and capacity for data quality; (2) assessing the quality of existing data; (3) responding to data limitations identified during assessments of data quality; and (4) building quality into the development of performance data. Specific strategies within each approach are illustrated with examples from the six agencies we studied.</description><identifier>ISSN: 0149-7189</identifier><identifier>DOI: 10.1016/S0149-7189(00)00049-5</identifier><identifier>CODEN: EPPLDO</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Accountability ; Data Collection ; Data Quality ; Evaluation Methods ; Evaluation Research ; Federal Government ; Government Agencies ; Organizational Effectiveness ; Performance Based Assessment ; Performance Factors ; Public Administration</subject><ispartof>Evaluation and program planning, 2001-02, Vol.24 (1), p.83-94</ispartof><rights>2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-d60cd21dd75477a355101f198f3043a3fdff763b0dd2a88359e50b94440505d53</citedby><cites>FETCH-LOGICAL-c424t-d60cd21dd75477a355101f198f3043a3fdff763b0dd2a88359e50b94440505d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0149-7189(00)00049-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ631780$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeepplan/v_3a24_3ay_3a2001_3ai_3a1_3ap_3a83-94.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Divorski, S.</creatorcontrib><creatorcontrib>Scheirer, M.A.</creatorcontrib><title>Improving data quality for performance measures: results from a GAO study of verification and validation</title><title>Evaluation and program planning</title><description>The Government Performance and Results Act, and many other efforts to initiate performance reporting, bring attention to the characteristics and quality of the data underlying performance measures. The study summarized here looked for examples of useful practices that federal agencies are developing to ‘verify and validate’ their performance information, as required by the Results Act. We developed a framework to organize our findings. The framework contains four major approaches to assess and improve data quality: (1) fostering organizational commitment and capacity for data quality; (2) assessing the quality of existing data; (3) responding to data limitations identified during assessments of data quality; and (4) building quality into the development of performance data. Specific strategies within each approach are illustrated with examples from the six agencies we studied.</description><subject>Accountability</subject><subject>Data Collection</subject><subject>Data Quality</subject><subject>Evaluation Methods</subject><subject>Evaluation Research</subject><subject>Federal Government</subject><subject>Government Agencies</subject><subject>Organizational Effectiveness</subject><subject>Performance Based Assessment</subject><subject>Performance Factors</subject><subject>Public Administration</subject><issn>0149-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>7UB</sourceid><recordid>eNqFUctOHTEMnQVIpbR_AFJWVVlc6twk8-gGIcSrQmLRso5C4kDQvEgyI92_x3MvgmUjOSeO7eP4pCiOOZxy4OWvv8Bls6p43fwEOAEA8tRecfBx_aX4mtLLNlDJg-L5thvjMIf-iTmTDXudTBvyhvkhshEjQWd6i6xDk6aI6TejbWpzYj4OHTPs-vyepTy5DRs8mzEGH6zJYeiZ6R2bic1t3W_Fvjdtwu_veFg8XF3-u7hZ3d1f316c362sXMu8ciVYt-bOVUpWlRFK0VieN7UXIIUR3nlfleIRnFubuhaqQQWPjZQSFCinxGHxY8dLY71OmLLuQrLYtqbHYUq6hBKUrAUlql2ijUNKEb0eY-hM3GgOetFSb7XUi2gaQG8l00uDm11dxBHtRxHSGkfqomctzFrStlkOAJwgkC04ktVCN1I_546ojnZUJNsn0-WfUvCqBgqfvYdJrzlg1MkGpN9wIaLN2g3hP299A8WCoCM</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Divorski, S.</creator><creator>Scheirer, M.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope></search><sort><creationdate>20010201</creationdate><title>Improving data quality for performance measures: results from a GAO study of verification and validation</title><author>Divorski, S. ; Scheirer, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-d60cd21dd75477a355101f198f3043a3fdff763b0dd2a88359e50b94440505d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Accountability</topic><topic>Data Collection</topic><topic>Data Quality</topic><topic>Evaluation Methods</topic><topic>Evaluation Research</topic><topic>Federal Government</topic><topic>Government Agencies</topic><topic>Organizational Effectiveness</topic><topic>Performance Based Assessment</topic><topic>Performance Factors</topic><topic>Public Administration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Divorski, S.</creatorcontrib><creatorcontrib>Scheirer, M.A.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Evaluation and program planning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Divorski, S.</au><au>Scheirer, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ631780</ericid><atitle>Improving data quality for performance measures: results from a GAO study of verification and validation</atitle><jtitle>Evaluation and program planning</jtitle><date>2001-02-01</date><risdate>2001</risdate><volume>24</volume><issue>1</issue><spage>83</spage><epage>94</epage><pages>83-94</pages><issn>0149-7189</issn><coden>EPPLDO</coden><abstract>The Government Performance and Results Act, and many other efforts to initiate performance reporting, bring attention to the characteristics and quality of the data underlying performance measures. The study summarized here looked for examples of useful practices that federal agencies are developing to ‘verify and validate’ their performance information, as required by the Results Act. We developed a framework to organize our findings. The framework contains four major approaches to assess and improve data quality: (1) fostering organizational commitment and capacity for data quality; (2) assessing the quality of existing data; (3) responding to data limitations identified during assessments of data quality; and (4) building quality into the development of performance data. Specific strategies within each approach are illustrated with examples from the six agencies we studied.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0149-7189(00)00049-5</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0149-7189 |
ispartof | Evaluation and program planning, 2001-02, Vol.24 (1), p.83-94 |
issn | 0149-7189 |
language | eng |
recordid | cdi_proquest_miscellaneous_60605483 |
source | RePEc; Elsevier ScienceDirect Journals Complete; Worldwide Political Science Abstracts |
subjects | Accountability Data Collection Data Quality Evaluation Methods Evaluation Research Federal Government Government Agencies Organizational Effectiveness Performance Based Assessment Performance Factors Public Administration |
title | Improving data quality for performance measures: results from a GAO study of verification and validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20data%20quality%20for%20performance%20measures:%20results%20from%20a%20GAO%20study%20of%20verification%20and%20validation&rft.jtitle=Evaluation%20and%20program%20planning&rft.au=Divorski,%20S.&rft.date=2001-02-01&rft.volume=24&rft.issue=1&rft.spage=83&rft.epage=94&rft.pages=83-94&rft.issn=0149-7189&rft.coden=EPPLDO&rft_id=info:doi/10.1016/S0149-7189(00)00049-5&rft_dat=%3Cproquest_cross%3E60605483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=60605483&rft_id=info:pmid/&rft_ericid=EJ631780&rft_els_id=S0149718900000495&rfr_iscdi=true |