Improving data quality for performance measures: results from a GAO study of verification and validation

The Government Performance and Results Act, and many other efforts to initiate performance reporting, bring attention to the characteristics and quality of the data underlying performance measures. The study summarized here looked for examples of useful practices that federal agencies are developing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evaluation and program planning 2001-02, Vol.24 (1), p.83-94
Hauptverfasser: Divorski, S., Scheirer, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 1
container_start_page 83
container_title Evaluation and program planning
container_volume 24
creator Divorski, S.
Scheirer, M.A.
description The Government Performance and Results Act, and many other efforts to initiate performance reporting, bring attention to the characteristics and quality of the data underlying performance measures. The study summarized here looked for examples of useful practices that federal agencies are developing to ‘verify and validate’ their performance information, as required by the Results Act. We developed a framework to organize our findings. The framework contains four major approaches to assess and improve data quality: (1) fostering organizational commitment and capacity for data quality; (2) assessing the quality of existing data; (3) responding to data limitations identified during assessments of data quality; and (4) building quality into the development of performance data. Specific strategies within each approach are illustrated with examples from the six agencies we studied.
doi_str_mv 10.1016/S0149-7189(00)00049-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_60605483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ631780</ericid><els_id>S0149718900000495</els_id><sourcerecordid>60605483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-d60cd21dd75477a355101f198f3043a3fdff763b0dd2a88359e50b94440505d53</originalsourceid><addsrcrecordid>eNqFUctOHTEMnQVIpbR_AFJWVVlc6twk8-gGIcSrQmLRso5C4kDQvEgyI92_x3MvgmUjOSeO7eP4pCiOOZxy4OWvv8Bls6p43fwEOAEA8tRecfBx_aX4mtLLNlDJg-L5thvjMIf-iTmTDXudTBvyhvkhshEjQWd6i6xDk6aI6TejbWpzYj4OHTPs-vyepTy5DRs8mzEGH6zJYeiZ6R2bic1t3W_Fvjdtwu_veFg8XF3-u7hZ3d1f316c362sXMu8ciVYt-bOVUpWlRFK0VieN7UXIIUR3nlfleIRnFubuhaqQQWPjZQSFCinxGHxY8dLY71OmLLuQrLYtqbHYUq6hBKUrAUlql2ijUNKEb0eY-hM3GgOetFSb7XUi2gaQG8l00uDm11dxBHtRxHSGkfqomctzFrStlkOAJwgkC04ktVCN1I_546ojnZUJNsn0-WfUvCqBgqfvYdJrzlg1MkGpN9wIaLN2g3hP299A8WCoCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>60605483</pqid></control><display><type>article</type><title>Improving data quality for performance measures: results from a GAO study of verification and validation</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><source>Worldwide Political Science Abstracts</source><creator>Divorski, S. ; Scheirer, M.A.</creator><creatorcontrib>Divorski, S. ; Scheirer, M.A.</creatorcontrib><description>The Government Performance and Results Act, and many other efforts to initiate performance reporting, bring attention to the characteristics and quality of the data underlying performance measures. The study summarized here looked for examples of useful practices that federal agencies are developing to ‘verify and validate’ their performance information, as required by the Results Act. We developed a framework to organize our findings. The framework contains four major approaches to assess and improve data quality: (1) fostering organizational commitment and capacity for data quality; (2) assessing the quality of existing data; (3) responding to data limitations identified during assessments of data quality; and (4) building quality into the development of performance data. Specific strategies within each approach are illustrated with examples from the six agencies we studied.</description><identifier>ISSN: 0149-7189</identifier><identifier>DOI: 10.1016/S0149-7189(00)00049-5</identifier><identifier>CODEN: EPPLDO</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Accountability ; Data Collection ; Data Quality ; Evaluation Methods ; Evaluation Research ; Federal Government ; Government Agencies ; Organizational Effectiveness ; Performance Based Assessment ; Performance Factors ; Public Administration</subject><ispartof>Evaluation and program planning, 2001-02, Vol.24 (1), p.83-94</ispartof><rights>2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-d60cd21dd75477a355101f198f3043a3fdff763b0dd2a88359e50b94440505d53</citedby><cites>FETCH-LOGICAL-c424t-d60cd21dd75477a355101f198f3043a3fdff763b0dd2a88359e50b94440505d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0149-7189(00)00049-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ631780$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeepplan/v_3a24_3ay_3a2001_3ai_3a1_3ap_3a83-94.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Divorski, S.</creatorcontrib><creatorcontrib>Scheirer, M.A.</creatorcontrib><title>Improving data quality for performance measures: results from a GAO study of verification and validation</title><title>Evaluation and program planning</title><description>The Government Performance and Results Act, and many other efforts to initiate performance reporting, bring attention to the characteristics and quality of the data underlying performance measures. The study summarized here looked for examples of useful practices that federal agencies are developing to ‘verify and validate’ their performance information, as required by the Results Act. We developed a framework to organize our findings. The framework contains four major approaches to assess and improve data quality: (1) fostering organizational commitment and capacity for data quality; (2) assessing the quality of existing data; (3) responding to data limitations identified during assessments of data quality; and (4) building quality into the development of performance data. Specific strategies within each approach are illustrated with examples from the six agencies we studied.</description><subject>Accountability</subject><subject>Data Collection</subject><subject>Data Quality</subject><subject>Evaluation Methods</subject><subject>Evaluation Research</subject><subject>Federal Government</subject><subject>Government Agencies</subject><subject>Organizational Effectiveness</subject><subject>Performance Based Assessment</subject><subject>Performance Factors</subject><subject>Public Administration</subject><issn>0149-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>7UB</sourceid><recordid>eNqFUctOHTEMnQVIpbR_AFJWVVlc6twk8-gGIcSrQmLRso5C4kDQvEgyI92_x3MvgmUjOSeO7eP4pCiOOZxy4OWvv8Bls6p43fwEOAEA8tRecfBx_aX4mtLLNlDJg-L5thvjMIf-iTmTDXudTBvyhvkhshEjQWd6i6xDk6aI6TejbWpzYj4OHTPs-vyepTy5DRs8mzEGH6zJYeiZ6R2bic1t3W_Fvjdtwu_veFg8XF3-u7hZ3d1f316c362sXMu8ciVYt-bOVUpWlRFK0VieN7UXIIUR3nlfleIRnFubuhaqQQWPjZQSFCinxGHxY8dLY71OmLLuQrLYtqbHYUq6hBKUrAUlql2ijUNKEb0eY-hM3GgOetFSb7XUi2gaQG8l00uDm11dxBHtRxHSGkfqomctzFrStlkOAJwgkC04ktVCN1I_546ojnZUJNsn0-WfUvCqBgqfvYdJrzlg1MkGpN9wIaLN2g3hP299A8WCoCM</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Divorski, S.</creator><creator>Scheirer, M.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope></search><sort><creationdate>20010201</creationdate><title>Improving data quality for performance measures: results from a GAO study of verification and validation</title><author>Divorski, S. ; Scheirer, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-d60cd21dd75477a355101f198f3043a3fdff763b0dd2a88359e50b94440505d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Accountability</topic><topic>Data Collection</topic><topic>Data Quality</topic><topic>Evaluation Methods</topic><topic>Evaluation Research</topic><topic>Federal Government</topic><topic>Government Agencies</topic><topic>Organizational Effectiveness</topic><topic>Performance Based Assessment</topic><topic>Performance Factors</topic><topic>Public Administration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Divorski, S.</creatorcontrib><creatorcontrib>Scheirer, M.A.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Evaluation and program planning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Divorski, S.</au><au>Scheirer, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ631780</ericid><atitle>Improving data quality for performance measures: results from a GAO study of verification and validation</atitle><jtitle>Evaluation and program planning</jtitle><date>2001-02-01</date><risdate>2001</risdate><volume>24</volume><issue>1</issue><spage>83</spage><epage>94</epage><pages>83-94</pages><issn>0149-7189</issn><coden>EPPLDO</coden><abstract>The Government Performance and Results Act, and many other efforts to initiate performance reporting, bring attention to the characteristics and quality of the data underlying performance measures. The study summarized here looked for examples of useful practices that federal agencies are developing to ‘verify and validate’ their performance information, as required by the Results Act. We developed a framework to organize our findings. The framework contains four major approaches to assess and improve data quality: (1) fostering organizational commitment and capacity for data quality; (2) assessing the quality of existing data; (3) responding to data limitations identified during assessments of data quality; and (4) building quality into the development of performance data. Specific strategies within each approach are illustrated with examples from the six agencies we studied.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0149-7189(00)00049-5</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0149-7189
ispartof Evaluation and program planning, 2001-02, Vol.24 (1), p.83-94
issn 0149-7189
language eng
recordid cdi_proquest_miscellaneous_60605483
source RePEc; Elsevier ScienceDirect Journals Complete; Worldwide Political Science Abstracts
subjects Accountability
Data Collection
Data Quality
Evaluation Methods
Evaluation Research
Federal Government
Government Agencies
Organizational Effectiveness
Performance Based Assessment
Performance Factors
Public Administration
title Improving data quality for performance measures: results from a GAO study of verification and validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20data%20quality%20for%20performance%20measures:%20results%20from%20a%20GAO%20study%20of%20verification%20and%20validation&rft.jtitle=Evaluation%20and%20program%20planning&rft.au=Divorski,%20S.&rft.date=2001-02-01&rft.volume=24&rft.issue=1&rft.spage=83&rft.epage=94&rft.pages=83-94&rft.issn=0149-7189&rft.coden=EPPLDO&rft_id=info:doi/10.1016/S0149-7189(00)00049-5&rft_dat=%3Cproquest_cross%3E60605483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=60605483&rft_id=info:pmid/&rft_ericid=EJ631780&rft_els_id=S0149718900000495&rfr_iscdi=true