Estimating True Changes when Categorical Panel Data are Affected by Uncorrelated and Correlated Classification Errors: An Application to Unemployment Data

Conclusions about changes in categorical characteristics based on observed panel data can be incorrect when (even a small amount of) measurement error is present. Random measurement errors, referred to as independent classification errors, usually lead to over-estimation of the total amount of gross...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sociological methods & research 2000-11, Vol.29 (2), p.230-268
Hauptverfasser: BASSI, FRANCESCA, HAGENAARS, JACQUES A., CROON, MARCEL A., VERMUNT, JEROEN K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 2
container_start_page 230
container_title Sociological methods & research
container_volume 29
creator BASSI, FRANCESCA
HAGENAARS, JACQUES A.
CROON, MARCEL A.
VERMUNT, JEROEN K.
description Conclusions about changes in categorical characteristics based on observed panel data can be incorrect when (even a small amount of) measurement error is present. Random measurement errors, referred to as independent classification errors, usually lead to over-estimation of the total amount of gross change, whereas systematic, correlated errors usually cause underestimation of the transitions. Furthermore, the patterns of true change may be seriously distorted by independent or systematic classification errors. Latent class models and directed log-linear analysis are excellent tools to correct for both independent and correlated measurement errors. An extensive example on labor market states taken from the Survey of Income and Program Participation panel is presented.
doi_str_mv 10.1177/0049124100029002003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_60384025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0049124100029002003</sage_id><sourcerecordid>1839836393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-60be822120deb61ada598dd1d4c773feda79fa0d332019165e5f6e47da2bc1c33</originalsourceid><addsrcrecordid>eNqFkUtr3TAQhU1poLdJf0E3oi3duZmR_JCWwb1JC4F0kazNXGl04-DIqWRT8u8rcwMppY_FMAx8c2YOpyjeInxCbNtTgMqgrBAApMkFoF4UG6xrWWppqpfFZiXKFXlVvE7pDgBlC2pTLNs0D_c0D2EvruPCorulsOckftxyEB3NvJ_iYGkU3yjwKD7TTIIiizPv2c7sxO5R3AQ7xcgjrTMFJ7rnsRsppcFniXmYgtjGOMV0Uhx5GhO_eerHxc359rr7Ul5eXXztzi5Lq3Q1lw3sWEuJEhzvGiRHtdHOoats2yrPjlrjCZxSEtBgU3PtG65aR3Jn0Sp1XHw86D7E6fvCae7vh2R5HLOXaUl9A_kOyPq_YN0qA0at4LvfwLtpiSGb6CVoqLXSK_T-bxBqZbRqlFmfUwfKximlyL5_iDmK-Ngj9Gus_R9izVsfnrQp5Vh8pGCH9LyKDWKFGYMDlmjPv5z_h_JP9L-uKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1839836393</pqid></control><display><type>article</type><title>Estimating True Changes when Categorical Panel Data are Affected by Uncorrelated and Correlated Classification Errors: An Application to Unemployment Data</title><source>Sociological Abstracts</source><source>Periodicals Index Online</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>SAGE Complete A-Z List</source><creator>BASSI, FRANCESCA ; HAGENAARS, JACQUES A. ; CROON, MARCEL A. ; VERMUNT, JEROEN K.</creator><creatorcontrib>BASSI, FRANCESCA ; HAGENAARS, JACQUES A. ; CROON, MARCEL A. ; VERMUNT, JEROEN K.</creatorcontrib><description>Conclusions about changes in categorical characteristics based on observed panel data can be incorrect when (even a small amount of) measurement error is present. Random measurement errors, referred to as independent classification errors, usually lead to over-estimation of the total amount of gross change, whereas systematic, correlated errors usually cause underestimation of the transitions. Furthermore, the patterns of true change may be seriously distorted by independent or systematic classification errors. Latent class models and directed log-linear analysis are excellent tools to correct for both independent and correlated measurement errors. An extensive example on labor market states taken from the Survey of Income and Program Participation panel is presented.</description><identifier>ISSN: 0049-1241</identifier><identifier>EISSN: 1552-8294</identifier><identifier>DOI: 10.1177/0049124100029002003</identifier><identifier>CODEN: SMREDA</identifier><language>eng</language><publisher>Thousand Oaks, CA: SAGE Publications</publisher><subject>Categorical Data ; Classification ; Correlation ; Error of Measurement ; Errors ; Estimation ; History, theory and methodology ; Labor Market ; Latent Structure Analysis ; Loglinear Analysis ; Longitudinal Studies ; Methodology ; Panel Data ; Panel studies ; Research methods ; Social change ; Sociology ; Statistical analysis ; Surveys ; Unemployment</subject><ispartof>Sociological methods &amp; research, 2000-11, Vol.29 (2), p.230-268</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright SAGE PUBLICATIONS, INC. Nov 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c384t-60be822120deb61ada598dd1d4c773feda79fa0d332019165e5f6e47da2bc1c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0049124100029002003$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0049124100029002003$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27868,27923,27924,30999,33773,33774,43620,43621</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1161141$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BASSI, FRANCESCA</creatorcontrib><creatorcontrib>HAGENAARS, JACQUES A.</creatorcontrib><creatorcontrib>CROON, MARCEL A.</creatorcontrib><creatorcontrib>VERMUNT, JEROEN K.</creatorcontrib><title>Estimating True Changes when Categorical Panel Data are Affected by Uncorrelated and Correlated Classification Errors: An Application to Unemployment Data</title><title>Sociological methods &amp; research</title><description>Conclusions about changes in categorical characteristics based on observed panel data can be incorrect when (even a small amount of) measurement error is present. Random measurement errors, referred to as independent classification errors, usually lead to over-estimation of the total amount of gross change, whereas systematic, correlated errors usually cause underestimation of the transitions. Furthermore, the patterns of true change may be seriously distorted by independent or systematic classification errors. Latent class models and directed log-linear analysis are excellent tools to correct for both independent and correlated measurement errors. An extensive example on labor market states taken from the Survey of Income and Program Participation panel is presented.</description><subject>Categorical Data</subject><subject>Classification</subject><subject>Correlation</subject><subject>Error of Measurement</subject><subject>Errors</subject><subject>Estimation</subject><subject>History, theory and methodology</subject><subject>Labor Market</subject><subject>Latent Structure Analysis</subject><subject>Loglinear Analysis</subject><subject>Longitudinal Studies</subject><subject>Methodology</subject><subject>Panel Data</subject><subject>Panel studies</subject><subject>Research methods</subject><subject>Social change</subject><subject>Sociology</subject><subject>Statistical analysis</subject><subject>Surveys</subject><subject>Unemployment</subject><issn>0049-1241</issn><issn>1552-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>BHHNA</sourceid><sourceid>7QJ</sourceid><recordid>eNqFkUtr3TAQhU1poLdJf0E3oi3duZmR_JCWwb1JC4F0kazNXGl04-DIqWRT8u8rcwMppY_FMAx8c2YOpyjeInxCbNtTgMqgrBAApMkFoF4UG6xrWWppqpfFZiXKFXlVvE7pDgBlC2pTLNs0D_c0D2EvruPCorulsOckftxyEB3NvJ_iYGkU3yjwKD7TTIIiizPv2c7sxO5R3AQ7xcgjrTMFJ7rnsRsppcFniXmYgtjGOMV0Uhx5GhO_eerHxc359rr7Ul5eXXztzi5Lq3Q1lw3sWEuJEhzvGiRHtdHOoats2yrPjlrjCZxSEtBgU3PtG65aR3Jn0Sp1XHw86D7E6fvCae7vh2R5HLOXaUl9A_kOyPq_YN0qA0at4LvfwLtpiSGb6CVoqLXSK_T-bxBqZbRqlFmfUwfKximlyL5_iDmK-Ngj9Gus_R9izVsfnrQp5Vh8pGCH9LyKDWKFGYMDlmjPv5z_h_JP9L-uKA</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>BASSI, FRANCESCA</creator><creator>HAGENAARS, JACQUES A.</creator><creator>CROON, MARCEL A.</creator><creator>VERMUNT, JEROEN K.</creator><general>SAGE Publications</general><general>Sage Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQCIK</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope><scope>7QJ</scope></search><sort><creationdate>20001101</creationdate><title>Estimating True Changes when Categorical Panel Data are Affected by Uncorrelated and Correlated Classification Errors</title><author>BASSI, FRANCESCA ; HAGENAARS, JACQUES A. ; CROON, MARCEL A. ; VERMUNT, JEROEN K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-60be822120deb61ada598dd1d4c773feda79fa0d332019165e5f6e47da2bc1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Categorical Data</topic><topic>Classification</topic><topic>Correlation</topic><topic>Error of Measurement</topic><topic>Errors</topic><topic>Estimation</topic><topic>History, theory and methodology</topic><topic>Labor Market</topic><topic>Latent Structure Analysis</topic><topic>Loglinear Analysis</topic><topic>Longitudinal Studies</topic><topic>Methodology</topic><topic>Panel Data</topic><topic>Panel studies</topic><topic>Research methods</topic><topic>Social change</topic><topic>Sociology</topic><topic>Statistical analysis</topic><topic>Surveys</topic><topic>Unemployment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BASSI, FRANCESCA</creatorcontrib><creatorcontrib>HAGENAARS, JACQUES A.</creatorcontrib><creatorcontrib>CROON, MARCEL A.</creatorcontrib><creatorcontrib>VERMUNT, JEROEN K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 33</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><jtitle>Sociological methods &amp; research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BASSI, FRANCESCA</au><au>HAGENAARS, JACQUES A.</au><au>CROON, MARCEL A.</au><au>VERMUNT, JEROEN K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating True Changes when Categorical Panel Data are Affected by Uncorrelated and Correlated Classification Errors: An Application to Unemployment Data</atitle><jtitle>Sociological methods &amp; research</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>29</volume><issue>2</issue><spage>230</spage><epage>268</epage><pages>230-268</pages><issn>0049-1241</issn><eissn>1552-8294</eissn><coden>SMREDA</coden><abstract>Conclusions about changes in categorical characteristics based on observed panel data can be incorrect when (even a small amount of) measurement error is present. Random measurement errors, referred to as independent classification errors, usually lead to over-estimation of the total amount of gross change, whereas systematic, correlated errors usually cause underestimation of the transitions. Furthermore, the patterns of true change may be seriously distorted by independent or systematic classification errors. Latent class models and directed log-linear analysis are excellent tools to correct for both independent and correlated measurement errors. An extensive example on labor market states taken from the Survey of Income and Program Participation panel is presented.</abstract><cop>Thousand Oaks, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0049124100029002003</doi><tpages>39</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0049-1241
ispartof Sociological methods & research, 2000-11, Vol.29 (2), p.230-268
issn 0049-1241
1552-8294
language eng
recordid cdi_proquest_miscellaneous_60384025
source Sociological Abstracts; Periodicals Index Online; Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete A-Z List
subjects Categorical Data
Classification
Correlation
Error of Measurement
Errors
Estimation
History, theory and methodology
Labor Market
Latent Structure Analysis
Loglinear Analysis
Longitudinal Studies
Methodology
Panel Data
Panel studies
Research methods
Social change
Sociology
Statistical analysis
Surveys
Unemployment
title Estimating True Changes when Categorical Panel Data are Affected by Uncorrelated and Correlated Classification Errors: An Application to Unemployment Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20True%20Changes%20when%20Categorical%20Panel%20Data%20are%20Affected%20by%20Uncorrelated%20and%20Correlated%20Classification%20Errors:%20An%20Application%20to%20Unemployment%20Data&rft.jtitle=Sociological%20methods%20&%20research&rft.au=BASSI,%20FRANCESCA&rft.date=2000-11-01&rft.volume=29&rft.issue=2&rft.spage=230&rft.epage=268&rft.pages=230-268&rft.issn=0049-1241&rft.eissn=1552-8294&rft.coden=SMREDA&rft_id=info:doi/10.1177/0049124100029002003&rft_dat=%3Cproquest_cross%3E1839836393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1839836393&rft_id=info:pmid/&rft_sage_id=10.1177_0049124100029002003&rfr_iscdi=true