Correlation Versus Interchangeability: The Limited Robustness of Empirical Findings on Democracy Using Highly Correlated Data Sets

This article shows that highly correlated measures can produce different results. We identify a democratization model from the literature and test it in more than 120 countries from 1951 to 1992. Then, we check whether the results are robust regarding measures of democracy, time periods, and levels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Political analysis 2003-04, Vol.11 (2), p.196-203
Hauptverfasser: Casper, Gretchen, Tufis, Claudiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 2
container_start_page 196
container_title Political analysis
container_volume 11
creator Casper, Gretchen
Tufis, Claudiu
description This article shows that highly correlated measures can produce different results. We identify a democratization model from the literature and test it in more than 120 countries from 1951 to 1992. Then, we check whether the results are robust regarding measures of democracy, time periods, and levels of development. The findings show that measures do matter: Whereas some of the findings are robust, most of them are not. This explains, in part, why the debates on democracy have continued rather than been resolved. More important, it underscores the need for more careful use of measures and further testing to increase confidence in the findings. Scholars in comparative politics are drawn increasingly to large-N statistical analyses, often using data sets collected by others. As in any field, we show how they must be careful in choosing the most appropriate measures for their studies, without assuming that any correlated measure will do.
doi_str_mv 10.1093/pan/mpg009
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_60174780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1093_pan_mpg009</cupid><jstor_id>25791723</jstor_id><sourcerecordid>25791723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-e01d4b28d85d3cfa5e94de0ce080eec7f3c4c2e7c19362efb7ccbb244aede5203</originalsourceid><addsrcrecordid>eNplkcGL1DAUxosouK5evAvBgwexbpKmTeNNZnd2FmYRdFdkLyFNXzsZ26QmKThX_3IzdF1ETwnv-_F9j_dl2UuC3xMsirNJ2bNx6jEWj7ITwniVM1GLx-mPGc-JqPnT7FkIe4wJ50KcZL9WznsYVDTOoq_gwxzQlY3g9U7ZHlRjBhMPH9DNDtDWjCZCiz67Zg7RQgjIdehinIw3Wg1obWxrbJ-mFp3D6LRX-oBuQ5qhjel3wwH9SUsu5yoq9AVieJ496dQQ4MX9e5rdri9uVpt8--nyavVxm2tG6pgDJi1raN3WZVvoTpUgWAtYA64xgOZdoZmmwDURRUWha7jWTUMZU9BCSXFxmr1ZfCfvfswQohxN0DAMyoKbg6zSTRivj-Drf8C9m71Nu0kiWMUrwmmC3i6Q9i4ED52cvBmVP0iC5bELmbqQSxcJfrXA-xCdfyBpycXRK-n5opsQ4eeDrvx3WfGCl3Lz7U5eUk6vxfpOXif-3X24Ghtv2h7-WvH_-N9rtaiJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194676172</pqid></control><display><type>article</type><title>Correlation Versus Interchangeability: The Limited Robustness of Empirical Findings on Democracy Using Highly Correlated Data Sets</title><source>Worldwide Political Science Abstracts</source><source>Jstor Complete Legacy</source><source>Political Science Complete</source><source>Cambridge University Press Journals Complete</source><creator>Casper, Gretchen ; Tufis, Claudiu</creator><creatorcontrib>Casper, Gretchen ; Tufis, Claudiu</creatorcontrib><description>This article shows that highly correlated measures can produce different results. We identify a democratization model from the literature and test it in more than 120 countries from 1951 to 1992. Then, we check whether the results are robust regarding measures of democracy, time periods, and levels of development. The findings show that measures do matter: Whereas some of the findings are robust, most of them are not. This explains, in part, why the debates on democracy have continued rather than been resolved. More important, it underscores the need for more careful use of measures and further testing to increase confidence in the findings. Scholars in comparative politics are drawn increasingly to large-N statistical analyses, often using data sets collected by others. As in any field, we show how they must be careful in choosing the most appropriate measures for their studies, without assuming that any correlated measure will do.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1093/pan/mpg009</identifier><language>eng</language><publisher>New York, US: Cambridge University Press</publisher><subject>Autocracy ; Comparative Politics ; Correlation ; Correlations ; Data Banks ; Datasets ; Democracy ; Democratization ; Does NES Overreport Turnout Decline? ; Freedom ; Measures (Instruments) ; Methodological Problems ; Methodology (Data Analysis) ; Political analysis ; Political debate ; Political parties ; Political science ; Polities ; Polyarchy ; Primary education ; REPLICATIONS AND EXTENSIONS ; Secondary education</subject><ispartof>Political analysis, 2003-04, Vol.11 (2), p.196-203</ispartof><rights>Copyright © Political Methodology Section of the American Political Science Association 2003</rights><rights>Copyright © 2003 Society for Political Methodology</rights><rights>Copyright Oxford University Press(England) Spring 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-e01d4b28d85d3cfa5e94de0ce080eec7f3c4c2e7c19362efb7ccbb244aede5203</citedby><cites>FETCH-LOGICAL-c418t-e01d4b28d85d3cfa5e94de0ce080eec7f3c4c2e7c19362efb7ccbb244aede5203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25791723$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047198700010263/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,800,27905,27906,55609,57998,58231</link.rule.ids></links><search><creatorcontrib>Casper, Gretchen</creatorcontrib><creatorcontrib>Tufis, Claudiu</creatorcontrib><title>Correlation Versus Interchangeability: The Limited Robustness of Empirical Findings on Democracy Using Highly Correlated Data Sets</title><title>Political analysis</title><addtitle>Polit. anal</addtitle><description>This article shows that highly correlated measures can produce different results. We identify a democratization model from the literature and test it in more than 120 countries from 1951 to 1992. Then, we check whether the results are robust regarding measures of democracy, time periods, and levels of development. The findings show that measures do matter: Whereas some of the findings are robust, most of them are not. This explains, in part, why the debates on democracy have continued rather than been resolved. More important, it underscores the need for more careful use of measures and further testing to increase confidence in the findings. Scholars in comparative politics are drawn increasingly to large-N statistical analyses, often using data sets collected by others. As in any field, we show how they must be careful in choosing the most appropriate measures for their studies, without assuming that any correlated measure will do.</description><subject>Autocracy</subject><subject>Comparative Politics</subject><subject>Correlation</subject><subject>Correlations</subject><subject>Data Banks</subject><subject>Datasets</subject><subject>Democracy</subject><subject>Democratization</subject><subject>Does NES Overreport Turnout Decline?</subject><subject>Freedom</subject><subject>Measures (Instruments)</subject><subject>Methodological Problems</subject><subject>Methodology (Data Analysis)</subject><subject>Political analysis</subject><subject>Political debate</subject><subject>Political parties</subject><subject>Political science</subject><subject>Polities</subject><subject>Polyarchy</subject><subject>Primary education</subject><subject>REPLICATIONS AND EXTENSIONS</subject><subject>Secondary education</subject><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNplkcGL1DAUxosouK5evAvBgwexbpKmTeNNZnd2FmYRdFdkLyFNXzsZ26QmKThX_3IzdF1ETwnv-_F9j_dl2UuC3xMsirNJ2bNx6jEWj7ITwniVM1GLx-mPGc-JqPnT7FkIe4wJ50KcZL9WznsYVDTOoq_gwxzQlY3g9U7ZHlRjBhMPH9DNDtDWjCZCiz67Zg7RQgjIdehinIw3Wg1obWxrbJ-mFp3D6LRX-oBuQ5qhjel3wwH9SUsu5yoq9AVieJ496dQQ4MX9e5rdri9uVpt8--nyavVxm2tG6pgDJi1raN3WZVvoTpUgWAtYA64xgOZdoZmmwDURRUWha7jWTUMZU9BCSXFxmr1ZfCfvfswQohxN0DAMyoKbg6zSTRivj-Drf8C9m71Nu0kiWMUrwmmC3i6Q9i4ED52cvBmVP0iC5bELmbqQSxcJfrXA-xCdfyBpycXRK-n5opsQ4eeDrvx3WfGCl3Lz7U5eUk6vxfpOXif-3X24Ghtv2h7-WvH_-N9rtaiJ</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Casper, Gretchen</creator><creator>Tufis, Claudiu</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope></search><sort><creationdate>20030401</creationdate><title>Correlation Versus Interchangeability: The Limited Robustness of Empirical Findings on Democracy Using Highly Correlated Data Sets</title><author>Casper, Gretchen ; Tufis, Claudiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-e01d4b28d85d3cfa5e94de0ce080eec7f3c4c2e7c19362efb7ccbb244aede5203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Autocracy</topic><topic>Comparative Politics</topic><topic>Correlation</topic><topic>Correlations</topic><topic>Data Banks</topic><topic>Datasets</topic><topic>Democracy</topic><topic>Democratization</topic><topic>Does NES Overreport Turnout Decline?</topic><topic>Freedom</topic><topic>Measures (Instruments)</topic><topic>Methodological Problems</topic><topic>Methodology (Data Analysis)</topic><topic>Political analysis</topic><topic>Political debate</topic><topic>Political parties</topic><topic>Political science</topic><topic>Polities</topic><topic>Polyarchy</topic><topic>Primary education</topic><topic>REPLICATIONS AND EXTENSIONS</topic><topic>Secondary education</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casper, Gretchen</creatorcontrib><creatorcontrib>Tufis, Claudiu</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casper, Gretchen</au><au>Tufis, Claudiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation Versus Interchangeability: The Limited Robustness of Empirical Findings on Democracy Using Highly Correlated Data Sets</atitle><jtitle>Political analysis</jtitle><addtitle>Polit. anal</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>11</volume><issue>2</issue><spage>196</spage><epage>203</epage><pages>196-203</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>This article shows that highly correlated measures can produce different results. We identify a democratization model from the literature and test it in more than 120 countries from 1951 to 1992. Then, we check whether the results are robust regarding measures of democracy, time periods, and levels of development. The findings show that measures do matter: Whereas some of the findings are robust, most of them are not. This explains, in part, why the debates on democracy have continued rather than been resolved. More important, it underscores the need for more careful use of measures and further testing to increase confidence in the findings. Scholars in comparative politics are drawn increasingly to large-N statistical analyses, often using data sets collected by others. As in any field, we show how they must be careful in choosing the most appropriate measures for their studies, without assuming that any correlated measure will do.</abstract><cop>New York, US</cop><pub>Cambridge University Press</pub><doi>10.1093/pan/mpg009</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-1987
ispartof Political analysis, 2003-04, Vol.11 (2), p.196-203
issn 1047-1987
1476-4989
language eng
recordid cdi_proquest_miscellaneous_60174780
source Worldwide Political Science Abstracts; Jstor Complete Legacy; Political Science Complete; Cambridge University Press Journals Complete
subjects Autocracy
Comparative Politics
Correlation
Correlations
Data Banks
Datasets
Democracy
Democratization
Does NES Overreport Turnout Decline?
Freedom
Measures (Instruments)
Methodological Problems
Methodology (Data Analysis)
Political analysis
Political debate
Political parties
Political science
Polities
Polyarchy
Primary education
REPLICATIONS AND EXTENSIONS
Secondary education
title Correlation Versus Interchangeability: The Limited Robustness of Empirical Findings on Democracy Using Highly Correlated Data Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20Versus%20Interchangeability:%20The%20Limited%20Robustness%20of%20Empirical%20Findings%20on%20Democracy%20Using%20Highly%20Correlated%20Data%20Sets&rft.jtitle=Political%20analysis&rft.au=Casper,%20Gretchen&rft.date=2003-04-01&rft.volume=11&rft.issue=2&rft.spage=196&rft.epage=203&rft.pages=196-203&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1093/pan/mpg009&rft_dat=%3Cjstor_proqu%3E25791723%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194676172&rft_id=info:pmid/&rft_cupid=10_1093_pan_mpg009&rft_jstor_id=25791723&rfr_iscdi=true