Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict

Entries in the burgeoning "text-as-data" movement are often accompanied by lists or visualizations of how word (or other lexical feature) usage differs across some pair or set of documents. These are intended either to establish some target semantic concept (like the content of partisan fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Political analysis 2008-10, Vol.16 (4), p.372-403
Hauptverfasser: Monroe, Burt L., Colaresi, Michael P., Quinn, Kevin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 403
container_issue 4
container_start_page 372
container_title Political analysis
container_volume 16
creator Monroe, Burt L.
Colaresi, Michael P.
Quinn, Kevin M.
description Entries in the burgeoning "text-as-data" movement are often accompanied by lists or visualizations of how word (or other lexical feature) usage differs across some pair or set of documents. These are intended either to establish some target semantic concept (like the content of partisan frames) to estimate word-specific measures that feed forward into another analysis (like locating parties in ideological space) or both. We discuss a variety of techniques for selecting words that capture partisan, or other, differences in political speech and for evaluating the relative importance of those words. We introduce and emphasize several new approaches based on Bayesian shrinkage and regularization. We illustrate the relative utility of these approaches with analyses of partisan, gender, and distributive speech in the U.S. Senate.
doi_str_mv 10.1093/pan/mpn018
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_59859237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1093_pan_mpn018</cupid><jstor_id>25791946</jstor_id><oup_id>10.1093/pan/mpn018</oup_id><sourcerecordid>25791946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-ab5227e368d2b0d8b74348a01cef99389e5ba49c09b49862c7e6d9942cbf246a3</originalsourceid><addsrcrecordid>eNp9kN-L1DAQx4soeJ6--C4EQQ_EekmbNhnfZNm9O1hQUPGxpOl0L6Wb9JJUbv97s9tDRMGn-fXhOzPfLHvJ6AdGobyclL3cT5Yy-Sg7Y1zUOQcJj1NOucgZSPE0exbCQCkTAuAsGzZmdxuNvSA_nO_CR7LFe6PVSDao4uyRfMURdTTOEmU7sv6pxlmdyt55ctOhjaY_GLsj8RbJytmYOsT15IsbTTwppWY_Gh2fZ096NQZ88RDPs--b9bfVdb79fHWz-rTNNWc85qqtikJgWcuuaGknW8FLLhVlGnuAUgJWreKgKbTpt7rQAusOgBe67Qteq_I8e7voTt7dzRhiszdB4zgqi24OTQWygqIUCXz9Fzi42dt0W8OA11xQCQl6t0DauxA89s3kzV75Q8Noc_S8SZ43i-cJfrPAbp7-z71auCFE53-TRSXguDnN3z8sVfvWm26Hf5z2r9wvSEebMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194647089</pqid></control><display><type>article</type><title>Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict</title><source>Worldwide Political Science Abstracts</source><source>Cambridge Journals</source><source>Jstor Complete Legacy</source><source>Political Science Complete</source><creator>Monroe, Burt L. ; Colaresi, Michael P. ; Quinn, Kevin M.</creator><creatorcontrib>Monroe, Burt L. ; Colaresi, Michael P. ; Quinn, Kevin M.</creatorcontrib><description>Entries in the burgeoning "text-as-data" movement are often accompanied by lists or visualizations of how word (or other lexical feature) usage differs across some pair or set of documents. These are intended either to establish some target semantic concept (like the content of partisan frames) to estimate word-specific measures that feed forward into another analysis (like locating parties in ideological space) or both. We discuss a variety of techniques for selecting words that capture partisan, or other, differences in political speech and for evaluating the relative importance of those words. We introduce and emphasize several new approaches based on Bayesian shrinkage and regularization. We illustrate the relative utility of these approaches with analyses of partisan, gender, and distributive speech in the U.S. Senate.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1093/pan/mpn018</identifier><language>eng</language><publisher>New York, US: Cambridge University Press</publisher><subject>Analytical estimating ; Automation ; Conflict ; Content analysis ; Data ; Modeling ; Point estimators ; Political debate ; Political parties ; Political partisanship ; Political science ; Political speeches ; Politicians ; Politics ; Public speaking ; Research Methodology ; Semantics ; Special Issue: The Statistical Analysis of Political Text ; Speech ; United States Senate ; Voting ; Words</subject><ispartof>Political analysis, 2008-10, Vol.16 (4), p.372-403</ispartof><rights>Copyright © The Author 2009. Published by Oxford University Press on behalf of the Society for Political Methodology</rights><rights>2009 Society for Political Methodology</rights><rights>The Author 2009. Published by Oxford University Press on behalf of the Society for Political Methodology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009</rights><rights>The Author 2009. Published by Oxford University Press on behalf of the Society for Political Methodology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-ab5227e368d2b0d8b74348a01cef99389e5ba49c09b49862c7e6d9942cbf246a3</citedby><cites>FETCH-LOGICAL-c414t-ab5227e368d2b0d8b74348a01cef99389e5ba49c09b49862c7e6d9942cbf246a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25791946$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047198700002291/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,800,27905,27906,55609,57998,58231</link.rule.ids></links><search><creatorcontrib>Monroe, Burt L.</creatorcontrib><creatorcontrib>Colaresi, Michael P.</creatorcontrib><creatorcontrib>Quinn, Kevin M.</creatorcontrib><title>Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict</title><title>Political analysis</title><addtitle>Polit. anal</addtitle><description>Entries in the burgeoning "text-as-data" movement are often accompanied by lists or visualizations of how word (or other lexical feature) usage differs across some pair or set of documents. These are intended either to establish some target semantic concept (like the content of partisan frames) to estimate word-specific measures that feed forward into another analysis (like locating parties in ideological space) or both. We discuss a variety of techniques for selecting words that capture partisan, or other, differences in political speech and for evaluating the relative importance of those words. We introduce and emphasize several new approaches based on Bayesian shrinkage and regularization. We illustrate the relative utility of these approaches with analyses of partisan, gender, and distributive speech in the U.S. Senate.</description><subject>Analytical estimating</subject><subject>Automation</subject><subject>Conflict</subject><subject>Content analysis</subject><subject>Data</subject><subject>Modeling</subject><subject>Point estimators</subject><subject>Political debate</subject><subject>Political parties</subject><subject>Political partisanship</subject><subject>Political science</subject><subject>Political speeches</subject><subject>Politicians</subject><subject>Politics</subject><subject>Public speaking</subject><subject>Research Methodology</subject><subject>Semantics</subject><subject>Special Issue: The Statistical Analysis of Political Text</subject><subject>Speech</subject><subject>United States Senate</subject><subject>Voting</subject><subject>Words</subject><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNp9kN-L1DAQx4soeJ6--C4EQQ_EekmbNhnfZNm9O1hQUPGxpOl0L6Wb9JJUbv97s9tDRMGn-fXhOzPfLHvJ6AdGobyclL3cT5Yy-Sg7Y1zUOQcJj1NOucgZSPE0exbCQCkTAuAsGzZmdxuNvSA_nO_CR7LFe6PVSDao4uyRfMURdTTOEmU7sv6pxlmdyt55ctOhjaY_GLsj8RbJytmYOsT15IsbTTwppWY_Gh2fZ096NQZ88RDPs--b9bfVdb79fHWz-rTNNWc85qqtikJgWcuuaGknW8FLLhVlGnuAUgJWreKgKbTpt7rQAusOgBe67Qteq_I8e7voTt7dzRhiszdB4zgqi24OTQWygqIUCXz9Fzi42dt0W8OA11xQCQl6t0DauxA89s3kzV75Q8Noc_S8SZ43i-cJfrPAbp7-z71auCFE53-TRSXguDnN3z8sVfvWm26Hf5z2r9wvSEebMw</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Monroe, Burt L.</creator><creator>Colaresi, Michael P.</creator><creator>Quinn, Kevin M.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope></search><sort><creationdate>20081001</creationdate><title>Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict</title><author>Monroe, Burt L. ; Colaresi, Michael P. ; Quinn, Kevin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-ab5227e368d2b0d8b74348a01cef99389e5ba49c09b49862c7e6d9942cbf246a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical estimating</topic><topic>Automation</topic><topic>Conflict</topic><topic>Content analysis</topic><topic>Data</topic><topic>Modeling</topic><topic>Point estimators</topic><topic>Political debate</topic><topic>Political parties</topic><topic>Political partisanship</topic><topic>Political science</topic><topic>Political speeches</topic><topic>Politicians</topic><topic>Politics</topic><topic>Public speaking</topic><topic>Research Methodology</topic><topic>Semantics</topic><topic>Special Issue: The Statistical Analysis of Political Text</topic><topic>Speech</topic><topic>United States Senate</topic><topic>Voting</topic><topic>Words</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monroe, Burt L.</creatorcontrib><creatorcontrib>Colaresi, Michael P.</creatorcontrib><creatorcontrib>Quinn, Kevin M.</creatorcontrib><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monroe, Burt L.</au><au>Colaresi, Michael P.</au><au>Quinn, Kevin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict</atitle><jtitle>Political analysis</jtitle><addtitle>Polit. anal</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>16</volume><issue>4</issue><spage>372</spage><epage>403</epage><pages>372-403</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>Entries in the burgeoning "text-as-data" movement are often accompanied by lists or visualizations of how word (or other lexical feature) usage differs across some pair or set of documents. These are intended either to establish some target semantic concept (like the content of partisan frames) to estimate word-specific measures that feed forward into another analysis (like locating parties in ideological space) or both. We discuss a variety of techniques for selecting words that capture partisan, or other, differences in political speech and for evaluating the relative importance of those words. We introduce and emphasize several new approaches based on Bayesian shrinkage and regularization. We illustrate the relative utility of these approaches with analyses of partisan, gender, and distributive speech in the U.S. Senate.</abstract><cop>New York, US</cop><pub>Cambridge University Press</pub><doi>10.1093/pan/mpn018</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-1987
ispartof Political analysis, 2008-10, Vol.16 (4), p.372-403
issn 1047-1987
1476-4989
language eng
recordid cdi_proquest_miscellaneous_59859237
source Worldwide Political Science Abstracts; Cambridge Journals; Jstor Complete Legacy; Political Science Complete
subjects Analytical estimating
Automation
Conflict
Content analysis
Data
Modeling
Point estimators
Political debate
Political parties
Political partisanship
Political science
Political speeches
Politicians
Politics
Public speaking
Research Methodology
Semantics
Special Issue: The Statistical Analysis of Political Text
Speech
United States Senate
Voting
Words
title Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fightin'%20Words:%20Lexical%20Feature%20Selection%20and%20Evaluation%20for%20Identifying%20the%20Content%20of%20Political%20Conflict&rft.jtitle=Political%20analysis&rft.au=Monroe,%20Burt%20L.&rft.date=2008-10-01&rft.volume=16&rft.issue=4&rft.spage=372&rft.epage=403&rft.pages=372-403&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1093/pan/mpn018&rft_dat=%3Cjstor_proqu%3E25791946%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194647089&rft_id=info:pmid/&rft_cupid=10_1093_pan_mpn018&rft_jstor_id=25791946&rft_oup_id=10.1093/pan/mpn018&rfr_iscdi=true