Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict
Entries in the burgeoning "text-as-data" movement are often accompanied by lists or visualizations of how word (or other lexical feature) usage differs across some pair or set of documents. These are intended either to establish some target semantic concept (like the content of partisan fr...
Gespeichert in:
Veröffentlicht in: | Political analysis 2008-10, Vol.16 (4), p.372-403 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 403 |
---|---|
container_issue | 4 |
container_start_page | 372 |
container_title | Political analysis |
container_volume | 16 |
creator | Monroe, Burt L. Colaresi, Michael P. Quinn, Kevin M. |
description | Entries in the burgeoning "text-as-data" movement are often accompanied by lists or visualizations of how word (or other lexical feature) usage differs across some pair or set of documents. These are intended either to establish some target semantic concept (like the content of partisan frames) to estimate word-specific measures that feed forward into another analysis (like locating parties in ideological space) or both. We discuss a variety of techniques for selecting words that capture partisan, or other, differences in political speech and for evaluating the relative importance of those words. We introduce and emphasize several new approaches based on Bayesian shrinkage and regularization. We illustrate the relative utility of these approaches with analyses of partisan, gender, and distributive speech in the U.S. Senate. |
doi_str_mv | 10.1093/pan/mpn018 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_59859237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1093_pan_mpn018</cupid><jstor_id>25791946</jstor_id><oup_id>10.1093/pan/mpn018</oup_id><sourcerecordid>25791946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-ab5227e368d2b0d8b74348a01cef99389e5ba49c09b49862c7e6d9942cbf246a3</originalsourceid><addsrcrecordid>eNp9kN-L1DAQx4soeJ6--C4EQQ_EekmbNhnfZNm9O1hQUPGxpOl0L6Wb9JJUbv97s9tDRMGn-fXhOzPfLHvJ6AdGobyclL3cT5Yy-Sg7Y1zUOQcJj1NOucgZSPE0exbCQCkTAuAsGzZmdxuNvSA_nO_CR7LFe6PVSDao4uyRfMURdTTOEmU7sv6pxlmdyt55ctOhjaY_GLsj8RbJytmYOsT15IsbTTwppWY_Gh2fZ096NQZ88RDPs--b9bfVdb79fHWz-rTNNWc85qqtikJgWcuuaGknW8FLLhVlGnuAUgJWreKgKbTpt7rQAusOgBe67Qteq_I8e7voTt7dzRhiszdB4zgqi24OTQWygqIUCXz9Fzi42dt0W8OA11xQCQl6t0DauxA89s3kzV75Q8Noc_S8SZ43i-cJfrPAbp7-z71auCFE53-TRSXguDnN3z8sVfvWm26Hf5z2r9wvSEebMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194647089</pqid></control><display><type>article</type><title>Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict</title><source>Worldwide Political Science Abstracts</source><source>Cambridge Journals</source><source>Jstor Complete Legacy</source><source>Political Science Complete</source><creator>Monroe, Burt L. ; Colaresi, Michael P. ; Quinn, Kevin M.</creator><creatorcontrib>Monroe, Burt L. ; Colaresi, Michael P. ; Quinn, Kevin M.</creatorcontrib><description>Entries in the burgeoning "text-as-data" movement are often accompanied by lists or visualizations of how word (or other lexical feature) usage differs across some pair or set of documents. These are intended either to establish some target semantic concept (like the content of partisan frames) to estimate word-specific measures that feed forward into another analysis (like locating parties in ideological space) or both. We discuss a variety of techniques for selecting words that capture partisan, or other, differences in political speech and for evaluating the relative importance of those words. We introduce and emphasize several new approaches based on Bayesian shrinkage and regularization. We illustrate the relative utility of these approaches with analyses of partisan, gender, and distributive speech in the U.S. Senate.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1093/pan/mpn018</identifier><language>eng</language><publisher>New York, US: Cambridge University Press</publisher><subject>Analytical estimating ; Automation ; Conflict ; Content analysis ; Data ; Modeling ; Point estimators ; Political debate ; Political parties ; Political partisanship ; Political science ; Political speeches ; Politicians ; Politics ; Public speaking ; Research Methodology ; Semantics ; Special Issue: The Statistical Analysis of Political Text ; Speech ; United States Senate ; Voting ; Words</subject><ispartof>Political analysis, 2008-10, Vol.16 (4), p.372-403</ispartof><rights>Copyright © The Author 2009. Published by Oxford University Press on behalf of the Society for Political Methodology</rights><rights>2009 Society for Political Methodology</rights><rights>The Author 2009. Published by Oxford University Press on behalf of the Society for Political Methodology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009</rights><rights>The Author 2009. Published by Oxford University Press on behalf of the Society for Political Methodology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-ab5227e368d2b0d8b74348a01cef99389e5ba49c09b49862c7e6d9942cbf246a3</citedby><cites>FETCH-LOGICAL-c414t-ab5227e368d2b0d8b74348a01cef99389e5ba49c09b49862c7e6d9942cbf246a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25791946$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1047198700002291/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,800,27905,27906,55609,57998,58231</link.rule.ids></links><search><creatorcontrib>Monroe, Burt L.</creatorcontrib><creatorcontrib>Colaresi, Michael P.</creatorcontrib><creatorcontrib>Quinn, Kevin M.</creatorcontrib><title>Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict</title><title>Political analysis</title><addtitle>Polit. anal</addtitle><description>Entries in the burgeoning "text-as-data" movement are often accompanied by lists or visualizations of how word (or other lexical feature) usage differs across some pair or set of documents. These are intended either to establish some target semantic concept (like the content of partisan frames) to estimate word-specific measures that feed forward into another analysis (like locating parties in ideological space) or both. We discuss a variety of techniques for selecting words that capture partisan, or other, differences in political speech and for evaluating the relative importance of those words. We introduce and emphasize several new approaches based on Bayesian shrinkage and regularization. We illustrate the relative utility of these approaches with analyses of partisan, gender, and distributive speech in the U.S. Senate.</description><subject>Analytical estimating</subject><subject>Automation</subject><subject>Conflict</subject><subject>Content analysis</subject><subject>Data</subject><subject>Modeling</subject><subject>Point estimators</subject><subject>Political debate</subject><subject>Political parties</subject><subject>Political partisanship</subject><subject>Political science</subject><subject>Political speeches</subject><subject>Politicians</subject><subject>Politics</subject><subject>Public speaking</subject><subject>Research Methodology</subject><subject>Semantics</subject><subject>Special Issue: The Statistical Analysis of Political Text</subject><subject>Speech</subject><subject>United States Senate</subject><subject>Voting</subject><subject>Words</subject><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNp9kN-L1DAQx4soeJ6--C4EQQ_EekmbNhnfZNm9O1hQUPGxpOl0L6Wb9JJUbv97s9tDRMGn-fXhOzPfLHvJ6AdGobyclL3cT5Yy-Sg7Y1zUOQcJj1NOucgZSPE0exbCQCkTAuAsGzZmdxuNvSA_nO_CR7LFe6PVSDao4uyRfMURdTTOEmU7sv6pxlmdyt55ctOhjaY_GLsj8RbJytmYOsT15IsbTTwppWY_Gh2fZ096NQZ88RDPs--b9bfVdb79fHWz-rTNNWc85qqtikJgWcuuaGknW8FLLhVlGnuAUgJWreKgKbTpt7rQAusOgBe67Qteq_I8e7voTt7dzRhiszdB4zgqi24OTQWygqIUCXz9Fzi42dt0W8OA11xQCQl6t0DauxA89s3kzV75Q8Noc_S8SZ43i-cJfrPAbp7-z71auCFE53-TRSXguDnN3z8sVfvWm26Hf5z2r9wvSEebMw</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Monroe, Burt L.</creator><creator>Colaresi, Michael P.</creator><creator>Quinn, Kevin M.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope></search><sort><creationdate>20081001</creationdate><title>Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict</title><author>Monroe, Burt L. ; Colaresi, Michael P. ; Quinn, Kevin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-ab5227e368d2b0d8b74348a01cef99389e5ba49c09b49862c7e6d9942cbf246a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical estimating</topic><topic>Automation</topic><topic>Conflict</topic><topic>Content analysis</topic><topic>Data</topic><topic>Modeling</topic><topic>Point estimators</topic><topic>Political debate</topic><topic>Political parties</topic><topic>Political partisanship</topic><topic>Political science</topic><topic>Political speeches</topic><topic>Politicians</topic><topic>Politics</topic><topic>Public speaking</topic><topic>Research Methodology</topic><topic>Semantics</topic><topic>Special Issue: The Statistical Analysis of Political Text</topic><topic>Speech</topic><topic>United States Senate</topic><topic>Voting</topic><topic>Words</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monroe, Burt L.</creatorcontrib><creatorcontrib>Colaresi, Michael P.</creatorcontrib><creatorcontrib>Quinn, Kevin M.</creatorcontrib><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monroe, Burt L.</au><au>Colaresi, Michael P.</au><au>Quinn, Kevin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict</atitle><jtitle>Political analysis</jtitle><addtitle>Polit. anal</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>16</volume><issue>4</issue><spage>372</spage><epage>403</epage><pages>372-403</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>Entries in the burgeoning "text-as-data" movement are often accompanied by lists or visualizations of how word (or other lexical feature) usage differs across some pair or set of documents. These are intended either to establish some target semantic concept (like the content of partisan frames) to estimate word-specific measures that feed forward into another analysis (like locating parties in ideological space) or both. We discuss a variety of techniques for selecting words that capture partisan, or other, differences in political speech and for evaluating the relative importance of those words. We introduce and emphasize several new approaches based on Bayesian shrinkage and regularization. We illustrate the relative utility of these approaches with analyses of partisan, gender, and distributive speech in the U.S. Senate.</abstract><cop>New York, US</cop><pub>Cambridge University Press</pub><doi>10.1093/pan/mpn018</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-1987 |
ispartof | Political analysis, 2008-10, Vol.16 (4), p.372-403 |
issn | 1047-1987 1476-4989 |
language | eng |
recordid | cdi_proquest_miscellaneous_59859237 |
source | Worldwide Political Science Abstracts; Cambridge Journals; Jstor Complete Legacy; Political Science Complete |
subjects | Analytical estimating Automation Conflict Content analysis Data Modeling Point estimators Political debate Political parties Political partisanship Political science Political speeches Politicians Politics Public speaking Research Methodology Semantics Special Issue: The Statistical Analysis of Political Text Speech United States Senate Voting Words |
title | Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fightin'%20Words:%20Lexical%20Feature%20Selection%20and%20Evaluation%20for%20Identifying%20the%20Content%20of%20Political%20Conflict&rft.jtitle=Political%20analysis&rft.au=Monroe,%20Burt%20L.&rft.date=2008-10-01&rft.volume=16&rft.issue=4&rft.spage=372&rft.epage=403&rft.pages=372-403&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1093/pan/mpn018&rft_dat=%3Cjstor_proqu%3E25791946%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194647089&rft_id=info:pmid/&rft_cupid=10_1093_pan_mpn018&rft_jstor_id=25791946&rft_oup_id=10.1093/pan/mpn018&rfr_iscdi=true |