A maximum entropy approach to natural language processing
The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper, we de...
Gespeichert in:
Veröffentlicht in: | Computational linguistics - Association for Computational Linguistics 1996-03, Vol.22 (1), p.39-71 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | Computational linguistics - Association for Computational Linguistics |
container_volume | 22 |
creator | BERGER, A. L DELLA PIETRA, V. J DELLA PIETRA, S. A |
description | The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper, we describe a method for statistical modeling based on maximum entropy. We present a maximum-likelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently, using as examples several problems in natural language processing. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_58320210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>58320210</sourcerecordid><originalsourceid>FETCH-LOGICAL-p244t-d75f0a960e199b772592652db7bfb8258f230af4289b88251be2aff0ded9ee0c3</originalsourceid><addsrcrecordid>eNqFjk1LxDAYhIMouK7-hxzEW-HNm2aTHJfFL1jwoufyNk1qpV8mLbj_3oB79zQM8zAzF2wjlITCSoGXbAPGigJB6Gt2k9IXAGiQesPsng_00w3rwP24xGk-cZrnOJH75MvER1rWSD3vaWxXaj3PkfMpdWN7y64C9cnfnXXLPp4e3w8vxfHt-fWwPxYzluVSNFoFILsDL6yttUZlcaewqXUdaoPKBJRAoURja5O9qD1SCND4xnoPTm7Zw19vnv5efVqqoUvO9_mSn9ZUKSMRUMC_INo8AgYzeH8GKTnqQ6TRdamaYzdQPFUSjdQZ-wWNol-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29428082</pqid></control><display><type>article</type><title>A maximum entropy approach to natural language processing</title><source>Alma/SFX Local Collection</source><creator>BERGER, A. L ; DELLA PIETRA, V. J ; DELLA PIETRA, S. A</creator><creatorcontrib>BERGER, A. L ; DELLA PIETRA, V. J ; DELLA PIETRA, S. A</creatorcontrib><description>The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper, we describe a method for statistical modeling based on maximum entropy. We present a maximum-likelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently, using as examples several problems in natural language processing.</description><identifier>ISSN: 0891-2017</identifier><identifier>EISSN: 1530-9312</identifier><identifier>CODEN: AJCLD9</identifier><language>eng</language><publisher>Cambridge, MA: MIT Press</publisher><subject>Applied linguistics ; Computational linguistics ; Linguistics</subject><ispartof>Computational linguistics - Association for Computational Linguistics, 1996-03, Vol.22 (1), p.39-71</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3283782$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BERGER, A. L</creatorcontrib><creatorcontrib>DELLA PIETRA, V. J</creatorcontrib><creatorcontrib>DELLA PIETRA, S. A</creatorcontrib><title>A maximum entropy approach to natural language processing</title><title>Computational linguistics - Association for Computational Linguistics</title><description>The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper, we describe a method for statistical modeling based on maximum entropy. We present a maximum-likelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently, using as examples several problems in natural language processing.</description><subject>Applied linguistics</subject><subject>Computational linguistics</subject><subject>Linguistics</subject><issn>0891-2017</issn><issn>1530-9312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFjk1LxDAYhIMouK7-hxzEW-HNm2aTHJfFL1jwoufyNk1qpV8mLbj_3oB79zQM8zAzF2wjlITCSoGXbAPGigJB6Gt2k9IXAGiQesPsng_00w3rwP24xGk-cZrnOJH75MvER1rWSD3vaWxXaj3PkfMpdWN7y64C9cnfnXXLPp4e3w8vxfHt-fWwPxYzluVSNFoFILsDL6yttUZlcaewqXUdaoPKBJRAoURja5O9qD1SCND4xnoPTm7Zw19vnv5efVqqoUvO9_mSn9ZUKSMRUMC_INo8AgYzeH8GKTnqQ6TRdamaYzdQPFUSjdQZ-wWNol-g</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>BERGER, A. L</creator><creator>DELLA PIETRA, V. J</creator><creator>DELLA PIETRA, S. A</creator><general>MIT Press</general><scope>IQODW</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7T9</scope></search><sort><creationdate>19960301</creationdate><title>A maximum entropy approach to natural language processing</title><author>BERGER, A. L ; DELLA PIETRA, V. J ; DELLA PIETRA, S. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p244t-d75f0a960e199b772592652db7bfb8258f230af4289b88251be2aff0ded9ee0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied linguistics</topic><topic>Computational linguistics</topic><topic>Linguistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BERGER, A. L</creatorcontrib><creatorcontrib>DELLA PIETRA, V. J</creatorcontrib><creatorcontrib>DELLA PIETRA, S. A</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>Computational linguistics - Association for Computational Linguistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BERGER, A. L</au><au>DELLA PIETRA, V. J</au><au>DELLA PIETRA, S. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A maximum entropy approach to natural language processing</atitle><jtitle>Computational linguistics - Association for Computational Linguistics</jtitle><date>1996-03-01</date><risdate>1996</risdate><volume>22</volume><issue>1</issue><spage>39</spage><epage>71</epage><pages>39-71</pages><issn>0891-2017</issn><eissn>1530-9312</eissn><coden>AJCLD9</coden><abstract>The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper, we describe a method for statistical modeling based on maximum entropy. We present a maximum-likelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently, using as examples several problems in natural language processing.</abstract><cop>Cambridge, MA</cop><pub>MIT Press</pub><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0891-2017 |
ispartof | Computational linguistics - Association for Computational Linguistics, 1996-03, Vol.22 (1), p.39-71 |
issn | 0891-2017 1530-9312 |
language | eng |
recordid | cdi_proquest_miscellaneous_58320210 |
source | Alma/SFX Local Collection |
subjects | Applied linguistics Computational linguistics Linguistics |
title | A maximum entropy approach to natural language processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T09%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20maximum%20entropy%20approach%20to%20natural%20language%20processing&rft.jtitle=Computational%20linguistics%20-%20Association%20for%20Computational%20Linguistics&rft.au=BERGER,%20A.%20L&rft.date=1996-03-01&rft.volume=22&rft.issue=1&rft.spage=39&rft.epage=71&rft.pages=39-71&rft.issn=0891-2017&rft.eissn=1530-9312&rft.coden=AJCLD9&rft_id=info:doi/&rft_dat=%3Cproquest_pasca%3E58320210%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29428082&rft_id=info:pmid/&rfr_iscdi=true |