A quantitative stock prediction system based on financial news

We examine the problem of discrete stock price prediction using a synthesis of linguistic, financial and statistical techniques to create the Arizona Financial Text System (AZFinText). The research within this paper seeks to contribute to the AZFinText system by comparing AZFinText’s predictions aga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing & management 2009-09, Vol.45 (5), p.571-583
Hauptverfasser: Schumaker, Robert P., Chen, Hsinchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 583
container_issue 5
container_start_page 571
container_title Information processing & management
container_volume 45
creator Schumaker, Robert P.
Chen, Hsinchun
description We examine the problem of discrete stock price prediction using a synthesis of linguistic, financial and statistical techniques to create the Arizona Financial Text System (AZFinText). The research within this paper seeks to contribute to the AZFinText system by comparing AZFinText’s predictions against existing quantitative funds and human stock pricing experts. We approach this line of research using textual representation and statistical machine learning methods on financial news articles partitioned by similar industry and sector groupings. Through our research, we discovered that stocks partitioned by Sectors were most predictable in measures of Closeness, Mean Squared Error (MSE) score of 0.1954, predicted Directional Accuracy of 71.18% and a Simulated Trading return of 8.50% (compared to 5.62% for the S&P 500 index). In direct comparisons to existing market experts and quantitative mutual funds, our system’s trading return of 8.50% outperformed well-known trading experts. Our system also performed well against the top 10 quantitative mutual funds of 2005, where our system would have placed fifth. When comparing AZFinText against only those quantitative funds that monitor the same securities, AZFinText had a 2% higher return than the best performing quant fund.
doi_str_mv 10.1016/j.ipm.2009.05.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57722179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306457309000478</els_id><sourcerecordid>1791646111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-d1462f279d5d250e22a5f53225ae86ed8d8bc3feb70afc9b694b5df2c0413aa63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD9-gLdF0Nuuk2SzHwhCKX5BwYueQzaZQOp2tyZppf_elBYPHjwNA8_7zvAQckWhoECru0XhVsuCAbQFiAKAHpEJbWqeC17TYzIBDlVeipqfkrMQFgBQCsom5GGafa3VEF1U0W0wC3HUn9nKo3E6unHIwjZEXGadCmiytFs3qEE71WcDfocLcmJVH_DyMM_Jx9Pj--wln789v86m81zzRsTc0LJiltWtEYYJQMaUsIIzJhQ2FZrGNJ3mFrsalNVtV7VlJ4xlGkrKlar4Obnd9678-LXGEOXSBY19rwYc10GKumaM1m0Cr_-Ai3Hth_SbpG3ZUlGVTYLoHtJ-DMGjlSvvlspvJQW50ykXMumUO50ShEw6U-bmUKyCVr31OwvhN5iON6m_TNz9nsOkY-PQy6AdDjoJ9aijNKP758oPwHGJ5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194915648</pqid></control><display><type>article</type><title>A quantitative stock prediction system based on financial news</title><source>Access via ScienceDirect (Elsevier)</source><creator>Schumaker, Robert P. ; Chen, Hsinchun</creator><creatorcontrib>Schumaker, Robert P. ; Chen, Hsinchun</creatorcontrib><description>We examine the problem of discrete stock price prediction using a synthesis of linguistic, financial and statistical techniques to create the Arizona Financial Text System (AZFinText). The research within this paper seeks to contribute to the AZFinText system by comparing AZFinText’s predictions against existing quantitative funds and human stock pricing experts. We approach this line of research using textual representation and statistical machine learning methods on financial news articles partitioned by similar industry and sector groupings. Through our research, we discovered that stocks partitioned by Sectors were most predictable in measures of Closeness, Mean Squared Error (MSE) score of 0.1954, predicted Directional Accuracy of 71.18% and a Simulated Trading return of 8.50% (compared to 5.62% for the S&amp;P 500 index). In direct comparisons to existing market experts and quantitative mutual funds, our system’s trading return of 8.50% outperformed well-known trading experts. Our system also performed well against the top 10 quantitative mutual funds of 2005, where our system would have placed fifth. When comparing AZFinText against only those quantitative funds that monitor the same securities, AZFinText had a 2% higher return than the best performing quant fund.</description><identifier>ISSN: 0306-4573</identifier><identifier>EISSN: 1873-5371</identifier><identifier>DOI: 10.1016/j.ipm.2009.05.001</identifier><identifier>CODEN: IPMADK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Automatic text analysis ; Comparative analysis ; Content analysis ; Exact sciences and technology ; Forecasting techniques ; Information and communication sciences ; Information and document structure and analysis ; Information processing and retrieval ; Information science. Documentation ; Knowledge management ; Mutual funds ; Prediction from textual documents ; Predictions ; Quantitative funds ; Rates of return ; Sciences and techniques of general use ; Scientific and technological watch. Knowledge management ; Stock exchanges ; Stock prices ; Studies</subject><ispartof>Information processing &amp; management, 2009-09, Vol.45 (5), p.571-583</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Sep 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-d1462f279d5d250e22a5f53225ae86ed8d8bc3feb70afc9b694b5df2c0413aa63</citedby><cites>FETCH-LOGICAL-c385t-d1462f279d5d250e22a5f53225ae86ed8d8bc3feb70afc9b694b5df2c0413aa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipm.2009.05.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21789494$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schumaker, Robert P.</creatorcontrib><creatorcontrib>Chen, Hsinchun</creatorcontrib><title>A quantitative stock prediction system based on financial news</title><title>Information processing &amp; management</title><description>We examine the problem of discrete stock price prediction using a synthesis of linguistic, financial and statistical techniques to create the Arizona Financial Text System (AZFinText). The research within this paper seeks to contribute to the AZFinText system by comparing AZFinText’s predictions against existing quantitative funds and human stock pricing experts. We approach this line of research using textual representation and statistical machine learning methods on financial news articles partitioned by similar industry and sector groupings. Through our research, we discovered that stocks partitioned by Sectors were most predictable in measures of Closeness, Mean Squared Error (MSE) score of 0.1954, predicted Directional Accuracy of 71.18% and a Simulated Trading return of 8.50% (compared to 5.62% for the S&amp;P 500 index). In direct comparisons to existing market experts and quantitative mutual funds, our system’s trading return of 8.50% outperformed well-known trading experts. Our system also performed well against the top 10 quantitative mutual funds of 2005, where our system would have placed fifth. When comparing AZFinText against only those quantitative funds that monitor the same securities, AZFinText had a 2% higher return than the best performing quant fund.</description><subject>Automatic text analysis</subject><subject>Comparative analysis</subject><subject>Content analysis</subject><subject>Exact sciences and technology</subject><subject>Forecasting techniques</subject><subject>Information and communication sciences</subject><subject>Information and document structure and analysis</subject><subject>Information processing and retrieval</subject><subject>Information science. Documentation</subject><subject>Knowledge management</subject><subject>Mutual funds</subject><subject>Prediction from textual documents</subject><subject>Predictions</subject><subject>Quantitative funds</subject><subject>Rates of return</subject><subject>Sciences and techniques of general use</subject><subject>Scientific and technological watch. Knowledge management</subject><subject>Stock exchanges</subject><subject>Stock prices</subject><subject>Studies</subject><issn>0306-4573</issn><issn>1873-5371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD9-gLdF0Nuuk2SzHwhCKX5BwYueQzaZQOp2tyZppf_elBYPHjwNA8_7zvAQckWhoECru0XhVsuCAbQFiAKAHpEJbWqeC17TYzIBDlVeipqfkrMQFgBQCsom5GGafa3VEF1U0W0wC3HUn9nKo3E6unHIwjZEXGadCmiytFs3qEE71WcDfocLcmJVH_DyMM_Jx9Pj--wln789v86m81zzRsTc0LJiltWtEYYJQMaUsIIzJhQ2FZrGNJ3mFrsalNVtV7VlJ4xlGkrKlar4Obnd9678-LXGEOXSBY19rwYc10GKumaM1m0Cr_-Ai3Hth_SbpG3ZUlGVTYLoHtJ-DMGjlSvvlspvJQW50ykXMumUO50ShEw6U-bmUKyCVr31OwvhN5iON6m_TNz9nsOkY-PQy6AdDjoJ9aijNKP758oPwHGJ5w</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Schumaker, Robert P.</creator><creator>Chen, Hsinchun</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20090901</creationdate><title>A quantitative stock prediction system based on financial news</title><author>Schumaker, Robert P. ; Chen, Hsinchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-d1462f279d5d250e22a5f53225ae86ed8d8bc3feb70afc9b694b5df2c0413aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automatic text analysis</topic><topic>Comparative analysis</topic><topic>Content analysis</topic><topic>Exact sciences and technology</topic><topic>Forecasting techniques</topic><topic>Information and communication sciences</topic><topic>Information and document structure and analysis</topic><topic>Information processing and retrieval</topic><topic>Information science. Documentation</topic><topic>Knowledge management</topic><topic>Mutual funds</topic><topic>Prediction from textual documents</topic><topic>Predictions</topic><topic>Quantitative funds</topic><topic>Rates of return</topic><topic>Sciences and techniques of general use</topic><topic>Scientific and technological watch. Knowledge management</topic><topic>Stock exchanges</topic><topic>Stock prices</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schumaker, Robert P.</creatorcontrib><creatorcontrib>Chen, Hsinchun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Information processing &amp; management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schumaker, Robert P.</au><au>Chen, Hsinchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantitative stock prediction system based on financial news</atitle><jtitle>Information processing &amp; management</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>45</volume><issue>5</issue><spage>571</spage><epage>583</epage><pages>571-583</pages><issn>0306-4573</issn><eissn>1873-5371</eissn><coden>IPMADK</coden><abstract>We examine the problem of discrete stock price prediction using a synthesis of linguistic, financial and statistical techniques to create the Arizona Financial Text System (AZFinText). The research within this paper seeks to contribute to the AZFinText system by comparing AZFinText’s predictions against existing quantitative funds and human stock pricing experts. We approach this line of research using textual representation and statistical machine learning methods on financial news articles partitioned by similar industry and sector groupings. Through our research, we discovered that stocks partitioned by Sectors were most predictable in measures of Closeness, Mean Squared Error (MSE) score of 0.1954, predicted Directional Accuracy of 71.18% and a Simulated Trading return of 8.50% (compared to 5.62% for the S&amp;P 500 index). In direct comparisons to existing market experts and quantitative mutual funds, our system’s trading return of 8.50% outperformed well-known trading experts. Our system also performed well against the top 10 quantitative mutual funds of 2005, where our system would have placed fifth. When comparing AZFinText against only those quantitative funds that monitor the same securities, AZFinText had a 2% higher return than the best performing quant fund.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ipm.2009.05.001</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4573
ispartof Information processing & management, 2009-09, Vol.45 (5), p.571-583
issn 0306-4573
1873-5371
language eng
recordid cdi_proquest_miscellaneous_57722179
source Access via ScienceDirect (Elsevier)
subjects Automatic text analysis
Comparative analysis
Content analysis
Exact sciences and technology
Forecasting techniques
Information and communication sciences
Information and document structure and analysis
Information processing and retrieval
Information science. Documentation
Knowledge management
Mutual funds
Prediction from textual documents
Predictions
Quantitative funds
Rates of return
Sciences and techniques of general use
Scientific and technological watch. Knowledge management
Stock exchanges
Stock prices
Studies
title A quantitative stock prediction system based on financial news
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantitative%20stock%20prediction%20system%20based%20on%20financial%20news&rft.jtitle=Information%20processing%20&%20management&rft.au=Schumaker,%20Robert%20P.&rft.date=2009-09-01&rft.volume=45&rft.issue=5&rft.spage=571&rft.epage=583&rft.pages=571-583&rft.issn=0306-4573&rft.eissn=1873-5371&rft.coden=IPMADK&rft_id=info:doi/10.1016/j.ipm.2009.05.001&rft_dat=%3Cproquest_cross%3E1791646111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194915648&rft_id=info:pmid/&rft_els_id=S0306457309000478&rfr_iscdi=true