Using query expansion in graph-based approach for query-focused multi-document summarization

This paper presents a novel query expansion method, which is combined in the graph-based algorithm for query-focused multi-document summarization, so as to resolve the problem of information limit in the original query. Our approach makes use of both the sentence-to-sentence relations and the senten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing & management 2009, Vol.45 (1), p.35-41
Hauptverfasser: Zhao, Lin, Wu, Lide, Huang, Xuanjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 35
container_title Information processing & management
container_volume 45
creator Zhao, Lin
Wu, Lide
Huang, Xuanjing
description This paper presents a novel query expansion method, which is combined in the graph-based algorithm for query-focused multi-document summarization, so as to resolve the problem of information limit in the original query. Our approach makes use of both the sentence-to-sentence relations and the sentence-to-word relations to select the query biased informative words from the document set and use them as query expansions to improve the sentence ranking result. Compared to previous query expansion approaches, our approach can capture more relevant information with less noise. We performed experiments on the data of document understanding conference (DUC) 2005 and DUC 2006, and the evaluation results show that the proposed query expansion method can significantly improve the system performance and make our system comparable to the state-of-the-art systems.
doi_str_mv 10.1016/j.ipm.2008.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57684321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030645730800071X</els_id><sourcerecordid>1608578871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a4b367cd34d8d8e93204f7b9b7eafa7f2930a558f22995844d21d86814a143423</originalsourceid><addsrcrecordid>eNp9kEtr3DAURkVoodNpfkB3JtDu7Fy9LImuSmgeEMim2QWERo9Egy27kl2S_vpqmNBFF1kJoXO_--kg9BlDhwH35_suzmNHAGQHogPAJ2iDpaAtpwK_Qxug0LeMC_oBfSxlDwCMY7JBD_clpsfm1-rzS-OfZ5NKnFITU_OYzfzU7kzxrjHznCdjn5ow5SPbhsmuh6dxHZbYunobfVqaso6jyfGPWWrMJ_Q-mKH409dzi-4vf_y8uG5v765uLr7ftpZKvrSG7WgvrKPMSSe9ogRYEDu1E94EIwJRFAznMhCiFJeMOYKd7CVmBjPKCN2ir8fc2rK2K4seY7F-GEzy01o0F71klOAKnv0H7qc1p9pNY8UU7nndtUX4CNk8lZJ90HOO9VMvGoM-yNZ7XWXrg2wNQlfZdebLa7Ap1gwhm2Rj-TdIQEkAJSr37cj5quN39FkXG32y3sXs7aLdFN_Y8hdGu5Sb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194916529</pqid></control><display><type>article</type><title>Using query expansion in graph-based approach for query-focused multi-document summarization</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Lin ; Wu, Lide ; Huang, Xuanjing</creator><creatorcontrib>Zhao, Lin ; Wu, Lide ; Huang, Xuanjing</creatorcontrib><description>This paper presents a novel query expansion method, which is combined in the graph-based algorithm for query-focused multi-document summarization, so as to resolve the problem of information limit in the original query. Our approach makes use of both the sentence-to-sentence relations and the sentence-to-word relations to select the query biased informative words from the document set and use them as query expansions to improve the sentence ranking result. Compared to previous query expansion approaches, our approach can capture more relevant information with less noise. We performed experiments on the data of document understanding conference (DUC) 2005 and DUC 2006, and the evaluation results show that the proposed query expansion method can significantly improve the system performance and make our system comparable to the state-of-the-art systems.</description><identifier>ISSN: 0306-4573</identifier><identifier>EISSN: 1873-5371</identifier><identifier>DOI: 10.1016/j.ipm.2008.07.001</identifier><identifier>CODEN: IPMADK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Automatic abstracting ; Content analysis ; Exact sciences and technology ; Graph algorithms ; Graph-based ranking ; Indexing. Classification. Abstracting ; Indexing. Classification. Abstracting. Syntheses ; Information and communication sciences ; Information and document structure and analysis ; Information processing ; Information processing and retrieval ; Information retrieval ; Information science. Documentation ; Query expansion ; Query-focused summarization ; Ranking ; Sciences and techniques of general use ; Studies</subject><ispartof>Information processing &amp; management, 2009, Vol.45 (1), p.35-41</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Jan 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a4b367cd34d8d8e93204f7b9b7eafa7f2930a558f22995844d21d86814a143423</citedby><cites>FETCH-LOGICAL-c385t-a4b367cd34d8d8e93204f7b9b7eafa7f2930a558f22995844d21d86814a143423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030645730800071X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20980097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Lin</creatorcontrib><creatorcontrib>Wu, Lide</creatorcontrib><creatorcontrib>Huang, Xuanjing</creatorcontrib><title>Using query expansion in graph-based approach for query-focused multi-document summarization</title><title>Information processing &amp; management</title><description>This paper presents a novel query expansion method, which is combined in the graph-based algorithm for query-focused multi-document summarization, so as to resolve the problem of information limit in the original query. Our approach makes use of both the sentence-to-sentence relations and the sentence-to-word relations to select the query biased informative words from the document set and use them as query expansions to improve the sentence ranking result. Compared to previous query expansion approaches, our approach can capture more relevant information with less noise. We performed experiments on the data of document understanding conference (DUC) 2005 and DUC 2006, and the evaluation results show that the proposed query expansion method can significantly improve the system performance and make our system comparable to the state-of-the-art systems.</description><subject>Automatic abstracting</subject><subject>Content analysis</subject><subject>Exact sciences and technology</subject><subject>Graph algorithms</subject><subject>Graph-based ranking</subject><subject>Indexing. Classification. Abstracting</subject><subject>Indexing. Classification. Abstracting. Syntheses</subject><subject>Information and communication sciences</subject><subject>Information and document structure and analysis</subject><subject>Information processing</subject><subject>Information processing and retrieval</subject><subject>Information retrieval</subject><subject>Information science. Documentation</subject><subject>Query expansion</subject><subject>Query-focused summarization</subject><subject>Ranking</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><issn>0306-4573</issn><issn>1873-5371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEtr3DAURkVoodNpfkB3JtDu7Fy9LImuSmgeEMim2QWERo9Egy27kl2S_vpqmNBFF1kJoXO_--kg9BlDhwH35_suzmNHAGQHogPAJ2iDpaAtpwK_Qxug0LeMC_oBfSxlDwCMY7JBD_clpsfm1-rzS-OfZ5NKnFITU_OYzfzU7kzxrjHznCdjn5ow5SPbhsmuh6dxHZbYunobfVqaso6jyfGPWWrMJ_Q-mKH409dzi-4vf_y8uG5v765uLr7ftpZKvrSG7WgvrKPMSSe9ogRYEDu1E94EIwJRFAznMhCiFJeMOYKd7CVmBjPKCN2ir8fc2rK2K4seY7F-GEzy01o0F71klOAKnv0H7qc1p9pNY8UU7nndtUX4CNk8lZJ90HOO9VMvGoM-yNZ7XWXrg2wNQlfZdebLa7Ap1gwhm2Rj-TdIQEkAJSr37cj5quN39FkXG32y3sXs7aLdFN_Y8hdGu5Sb</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Zhao, Lin</creator><creator>Wu, Lide</creator><creator>Huang, Xuanjing</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>2009</creationdate><title>Using query expansion in graph-based approach for query-focused multi-document summarization</title><author>Zhao, Lin ; Wu, Lide ; Huang, Xuanjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a4b367cd34d8d8e93204f7b9b7eafa7f2930a558f22995844d21d86814a143423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automatic abstracting</topic><topic>Content analysis</topic><topic>Exact sciences and technology</topic><topic>Graph algorithms</topic><topic>Graph-based ranking</topic><topic>Indexing. Classification. Abstracting</topic><topic>Indexing. Classification. Abstracting. Syntheses</topic><topic>Information and communication sciences</topic><topic>Information and document structure and analysis</topic><topic>Information processing</topic><topic>Information processing and retrieval</topic><topic>Information retrieval</topic><topic>Information science. Documentation</topic><topic>Query expansion</topic><topic>Query-focused summarization</topic><topic>Ranking</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lin</creatorcontrib><creatorcontrib>Wu, Lide</creatorcontrib><creatorcontrib>Huang, Xuanjing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Information processing &amp; management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lin</au><au>Wu, Lide</au><au>Huang, Xuanjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using query expansion in graph-based approach for query-focused multi-document summarization</atitle><jtitle>Information processing &amp; management</jtitle><date>2009</date><risdate>2009</risdate><volume>45</volume><issue>1</issue><spage>35</spage><epage>41</epage><pages>35-41</pages><issn>0306-4573</issn><eissn>1873-5371</eissn><coden>IPMADK</coden><abstract>This paper presents a novel query expansion method, which is combined in the graph-based algorithm for query-focused multi-document summarization, so as to resolve the problem of information limit in the original query. Our approach makes use of both the sentence-to-sentence relations and the sentence-to-word relations to select the query biased informative words from the document set and use them as query expansions to improve the sentence ranking result. Compared to previous query expansion approaches, our approach can capture more relevant information with less noise. We performed experiments on the data of document understanding conference (DUC) 2005 and DUC 2006, and the evaluation results show that the proposed query expansion method can significantly improve the system performance and make our system comparable to the state-of-the-art systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ipm.2008.07.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4573
ispartof Information processing & management, 2009, Vol.45 (1), p.35-41
issn 0306-4573
1873-5371
language eng
recordid cdi_proquest_miscellaneous_57684321
source Elsevier ScienceDirect Journals
subjects Automatic abstracting
Content analysis
Exact sciences and technology
Graph algorithms
Graph-based ranking
Indexing. Classification. Abstracting
Indexing. Classification. Abstracting. Syntheses
Information and communication sciences
Information and document structure and analysis
Information processing
Information processing and retrieval
Information retrieval
Information science. Documentation
Query expansion
Query-focused summarization
Ranking
Sciences and techniques of general use
Studies
title Using query expansion in graph-based approach for query-focused multi-document summarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20query%20expansion%20in%20graph-based%20approach%20for%20query-focused%20multi-document%20summarization&rft.jtitle=Information%20processing%20&%20management&rft.au=Zhao,%20Lin&rft.date=2009&rft.volume=45&rft.issue=1&rft.spage=35&rft.epage=41&rft.pages=35-41&rft.issn=0306-4573&rft.eissn=1873-5371&rft.coden=IPMADK&rft_id=info:doi/10.1016/j.ipm.2008.07.001&rft_dat=%3Cproquest_cross%3E1608578871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194916529&rft_id=info:pmid/&rft_els_id=S030645730800071X&rfr_iscdi=true