Using query expansion in graph-based approach for query-focused multi-document summarization
This paper presents a novel query expansion method, which is combined in the graph-based algorithm for query-focused multi-document summarization, so as to resolve the problem of information limit in the original query. Our approach makes use of both the sentence-to-sentence relations and the senten...
Gespeichert in:
Veröffentlicht in: | Information processing & management 2009, Vol.45 (1), p.35-41 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Information processing & management |
container_volume | 45 |
creator | Zhao, Lin Wu, Lide Huang, Xuanjing |
description | This paper presents a novel query expansion method, which is combined in the graph-based algorithm for query-focused multi-document summarization, so as to resolve the problem of information limit in the original query. Our approach makes use of both the sentence-to-sentence relations and the sentence-to-word relations to select the query biased informative words from the document set and use them as query expansions to improve the sentence ranking result. Compared to previous query expansion approaches, our approach can capture more relevant information with less noise. We performed experiments on the data of document understanding conference (DUC) 2005 and DUC 2006, and the evaluation results show that the proposed query expansion method can significantly improve the system performance and make our system comparable to the state-of-the-art systems. |
doi_str_mv | 10.1016/j.ipm.2008.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57684321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030645730800071X</els_id><sourcerecordid>1608578871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a4b367cd34d8d8e93204f7b9b7eafa7f2930a558f22995844d21d86814a143423</originalsourceid><addsrcrecordid>eNp9kEtr3DAURkVoodNpfkB3JtDu7Fy9LImuSmgeEMim2QWERo9Egy27kl2S_vpqmNBFF1kJoXO_--kg9BlDhwH35_suzmNHAGQHogPAJ2iDpaAtpwK_Qxug0LeMC_oBfSxlDwCMY7JBD_clpsfm1-rzS-OfZ5NKnFITU_OYzfzU7kzxrjHznCdjn5ow5SPbhsmuh6dxHZbYunobfVqaso6jyfGPWWrMJ_Q-mKH409dzi-4vf_y8uG5v765uLr7ftpZKvrSG7WgvrKPMSSe9ogRYEDu1E94EIwJRFAznMhCiFJeMOYKd7CVmBjPKCN2ir8fc2rK2K4seY7F-GEzy01o0F71klOAKnv0H7qc1p9pNY8UU7nndtUX4CNk8lZJ90HOO9VMvGoM-yNZ7XWXrg2wNQlfZdebLa7Ap1gwhm2Rj-TdIQEkAJSr37cj5quN39FkXG32y3sXs7aLdFN_Y8hdGu5Sb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194916529</pqid></control><display><type>article</type><title>Using query expansion in graph-based approach for query-focused multi-document summarization</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Lin ; Wu, Lide ; Huang, Xuanjing</creator><creatorcontrib>Zhao, Lin ; Wu, Lide ; Huang, Xuanjing</creatorcontrib><description>This paper presents a novel query expansion method, which is combined in the graph-based algorithm for query-focused multi-document summarization, so as to resolve the problem of information limit in the original query. Our approach makes use of both the sentence-to-sentence relations and the sentence-to-word relations to select the query biased informative words from the document set and use them as query expansions to improve the sentence ranking result. Compared to previous query expansion approaches, our approach can capture more relevant information with less noise. We performed experiments on the data of document understanding conference (DUC) 2005 and DUC 2006, and the evaluation results show that the proposed query expansion method can significantly improve the system performance and make our system comparable to the state-of-the-art systems.</description><identifier>ISSN: 0306-4573</identifier><identifier>EISSN: 1873-5371</identifier><identifier>DOI: 10.1016/j.ipm.2008.07.001</identifier><identifier>CODEN: IPMADK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Automatic abstracting ; Content analysis ; Exact sciences and technology ; Graph algorithms ; Graph-based ranking ; Indexing. Classification. Abstracting ; Indexing. Classification. Abstracting. Syntheses ; Information and communication sciences ; Information and document structure and analysis ; Information processing ; Information processing and retrieval ; Information retrieval ; Information science. Documentation ; Query expansion ; Query-focused summarization ; Ranking ; Sciences and techniques of general use ; Studies</subject><ispartof>Information processing & management, 2009, Vol.45 (1), p.35-41</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Jan 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a4b367cd34d8d8e93204f7b9b7eafa7f2930a558f22995844d21d86814a143423</citedby><cites>FETCH-LOGICAL-c385t-a4b367cd34d8d8e93204f7b9b7eafa7f2930a558f22995844d21d86814a143423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030645730800071X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20980097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Lin</creatorcontrib><creatorcontrib>Wu, Lide</creatorcontrib><creatorcontrib>Huang, Xuanjing</creatorcontrib><title>Using query expansion in graph-based approach for query-focused multi-document summarization</title><title>Information processing & management</title><description>This paper presents a novel query expansion method, which is combined in the graph-based algorithm for query-focused multi-document summarization, so as to resolve the problem of information limit in the original query. Our approach makes use of both the sentence-to-sentence relations and the sentence-to-word relations to select the query biased informative words from the document set and use them as query expansions to improve the sentence ranking result. Compared to previous query expansion approaches, our approach can capture more relevant information with less noise. We performed experiments on the data of document understanding conference (DUC) 2005 and DUC 2006, and the evaluation results show that the proposed query expansion method can significantly improve the system performance and make our system comparable to the state-of-the-art systems.</description><subject>Automatic abstracting</subject><subject>Content analysis</subject><subject>Exact sciences and technology</subject><subject>Graph algorithms</subject><subject>Graph-based ranking</subject><subject>Indexing. Classification. Abstracting</subject><subject>Indexing. Classification. Abstracting. Syntheses</subject><subject>Information and communication sciences</subject><subject>Information and document structure and analysis</subject><subject>Information processing</subject><subject>Information processing and retrieval</subject><subject>Information retrieval</subject><subject>Information science. Documentation</subject><subject>Query expansion</subject><subject>Query-focused summarization</subject><subject>Ranking</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><issn>0306-4573</issn><issn>1873-5371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEtr3DAURkVoodNpfkB3JtDu7Fy9LImuSmgeEMim2QWERo9Egy27kl2S_vpqmNBFF1kJoXO_--kg9BlDhwH35_suzmNHAGQHogPAJ2iDpaAtpwK_Qxug0LeMC_oBfSxlDwCMY7JBD_clpsfm1-rzS-OfZ5NKnFITU_OYzfzU7kzxrjHznCdjn5ow5SPbhsmuh6dxHZbYunobfVqaso6jyfGPWWrMJ_Q-mKH409dzi-4vf_y8uG5v765uLr7ftpZKvrSG7WgvrKPMSSe9ogRYEDu1E94EIwJRFAznMhCiFJeMOYKd7CVmBjPKCN2ir8fc2rK2K4seY7F-GEzy01o0F71klOAKnv0H7qc1p9pNY8UU7nndtUX4CNk8lZJ90HOO9VMvGoM-yNZ7XWXrg2wNQlfZdebLa7Ap1gwhm2Rj-TdIQEkAJSr37cj5quN39FkXG32y3sXs7aLdFN_Y8hdGu5Sb</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Zhao, Lin</creator><creator>Wu, Lide</creator><creator>Huang, Xuanjing</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>2009</creationdate><title>Using query expansion in graph-based approach for query-focused multi-document summarization</title><author>Zhao, Lin ; Wu, Lide ; Huang, Xuanjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a4b367cd34d8d8e93204f7b9b7eafa7f2930a558f22995844d21d86814a143423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automatic abstracting</topic><topic>Content analysis</topic><topic>Exact sciences and technology</topic><topic>Graph algorithms</topic><topic>Graph-based ranking</topic><topic>Indexing. Classification. Abstracting</topic><topic>Indexing. Classification. Abstracting. Syntheses</topic><topic>Information and communication sciences</topic><topic>Information and document structure and analysis</topic><topic>Information processing</topic><topic>Information processing and retrieval</topic><topic>Information retrieval</topic><topic>Information science. Documentation</topic><topic>Query expansion</topic><topic>Query-focused summarization</topic><topic>Ranking</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lin</creatorcontrib><creatorcontrib>Wu, Lide</creatorcontrib><creatorcontrib>Huang, Xuanjing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Information processing & management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lin</au><au>Wu, Lide</au><au>Huang, Xuanjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using query expansion in graph-based approach for query-focused multi-document summarization</atitle><jtitle>Information processing & management</jtitle><date>2009</date><risdate>2009</risdate><volume>45</volume><issue>1</issue><spage>35</spage><epage>41</epage><pages>35-41</pages><issn>0306-4573</issn><eissn>1873-5371</eissn><coden>IPMADK</coden><abstract>This paper presents a novel query expansion method, which is combined in the graph-based algorithm for query-focused multi-document summarization, so as to resolve the problem of information limit in the original query. Our approach makes use of both the sentence-to-sentence relations and the sentence-to-word relations to select the query biased informative words from the document set and use them as query expansions to improve the sentence ranking result. Compared to previous query expansion approaches, our approach can capture more relevant information with less noise. We performed experiments on the data of document understanding conference (DUC) 2005 and DUC 2006, and the evaluation results show that the proposed query expansion method can significantly improve the system performance and make our system comparable to the state-of-the-art systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ipm.2008.07.001</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4573 |
ispartof | Information processing & management, 2009, Vol.45 (1), p.35-41 |
issn | 0306-4573 1873-5371 |
language | eng |
recordid | cdi_proquest_miscellaneous_57684321 |
source | Elsevier ScienceDirect Journals |
subjects | Automatic abstracting Content analysis Exact sciences and technology Graph algorithms Graph-based ranking Indexing. Classification. Abstracting Indexing. Classification. Abstracting. Syntheses Information and communication sciences Information and document structure and analysis Information processing Information processing and retrieval Information retrieval Information science. Documentation Query expansion Query-focused summarization Ranking Sciences and techniques of general use Studies |
title | Using query expansion in graph-based approach for query-focused multi-document summarization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20query%20expansion%20in%20graph-based%20approach%20for%20query-focused%20multi-document%20summarization&rft.jtitle=Information%20processing%20&%20management&rft.au=Zhao,%20Lin&rft.date=2009&rft.volume=45&rft.issue=1&rft.spage=35&rft.epage=41&rft.pages=35-41&rft.issn=0306-4573&rft.eissn=1873-5371&rft.coden=IPMADK&rft_id=info:doi/10.1016/j.ipm.2008.07.001&rft_dat=%3Cproquest_cross%3E1608578871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194916529&rft_id=info:pmid/&rft_els_id=S030645730800071X&rfr_iscdi=true |