Confidence in classification : A bayesian approach

Bayesian classification is currently of considerable interest. It provides a strategy for eliminating the uncertainty associated with a particular choice of classifiermodel parameters, and is the optimal decision-theoretic choice under certain circumstances when there is no single "true" c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of classification 2006-09, Vol.23 (2), p.199-220
Hauptverfasser: KRZANOWSKI, Wojtek J, FIELDSEND, Jonathan E, BAILEY, Trevor C, EVERSON, Richard M, PARTRIDGE, Derek, SCHETININ, Vitaly
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue 2
container_start_page 199
container_title Journal of classification
container_volume 23
creator KRZANOWSKI, Wojtek J
FIELDSEND, Jonathan E
BAILEY, Trevor C
EVERSON, Richard M
PARTRIDGE, Derek
SCHETININ, Vitaly
description Bayesian classification is currently of considerable interest. It provides a strategy for eliminating the uncertainty associated with a particular choice of classifiermodel parameters, and is the optimal decision-theoretic choice under certain circumstances when there is no single "true" classifier for a given data set. Modern computing capabilities can easily support the Markov chain Monte Carlo sampling that is necessary to carry out the calculations involved, but the information available in these samples is not at present being fully utilised. We show how it can be allied to known results concerning the "reject option" in order to produce an assessment of the confidence that can be ascribed to particular classifications, and how these confidence measures can be used to compare the performances of classifiers. Incorporating these confidence measures can alter the apparent ranking of classifiers as given by straightforward success or error rates. Several possible methods for obtaining confidence assessments are described, and compared on a range of data sets using the Bayesian probabilistic nearest-neighbour classifier.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00357-006-0013-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57646799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094124911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-cbc9442446d531b5ef5d74ffe010a66ec0d16efcc5a42d69cc7a586eb42bf7f3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKs_wNsi6G012clH11spfkHBS-9hdjbBlG22Ju2h_96UCoKHYS7POx8PY7eCPwrOzVPmHJSpOdelBNRwxiZCQlMLkHDOJlwYXctGzy7ZVc5rXjJamwlrFmP0oXeRXBViRQPmHHwg3IUxVs_VvOrw4HLAWOF2m0akr2t24XHI7ua3T9nq9WW1eK-Xn28fi_myJjB6V1NHrZSNlLpXIDrlvOqN9N5xwVFrR7wX2nkihbLpdUtkUM2062TTeeNhyh5OY8vW773LO7sJmdwwYHTjPltltNSmbQt49w9cj_sUy2nWAHClClkgcYIojTkn5-02hQ2mgxXcHg3ak0FbDNqjQQslc_87GDPh4BNGCvkvOANR3gP4AUGHb3E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733055576</pqid></control><display><type>article</type><title>Confidence in classification : A bayesian approach</title><source>SpringerNature Journals</source><creator>KRZANOWSKI, Wojtek J ; FIELDSEND, Jonathan E ; BAILEY, Trevor C ; EVERSON, Richard M ; PARTRIDGE, Derek ; SCHETININ, Vitaly</creator><creatorcontrib>KRZANOWSKI, Wojtek J ; FIELDSEND, Jonathan E ; BAILEY, Trevor C ; EVERSON, Richard M ; PARTRIDGE, Derek ; SCHETININ, Vitaly</creatorcontrib><description>Bayesian classification is currently of considerable interest. It provides a strategy for eliminating the uncertainty associated with a particular choice of classifiermodel parameters, and is the optimal decision-theoretic choice under certain circumstances when there is no single "true" classifier for a given data set. Modern computing capabilities can easily support the Markov chain Monte Carlo sampling that is necessary to carry out the calculations involved, but the information available in these samples is not at present being fully utilised. We show how it can be allied to known results concerning the "reject option" in order to produce an assessment of the confidence that can be ascribed to particular classifications, and how these confidence measures can be used to compare the performances of classifiers. Incorporating these confidence measures can alter the apparent ranking of classifiers as given by straightforward success or error rates. Several possible methods for obtaining confidence assessments are described, and compared on a range of data sets using the Bayesian probabilistic nearest-neighbour classifier.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0176-4268</identifier><identifier>EISSN: 1432-1343</identifier><identifier>DOI: 10.1007/s00357-006-0013-3</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Automatic classification ; Bayesian analysis ; Bayesian techniques ; Computer applications ; Computer science; control theory; systems ; Confidence ; Decision theory ; Exact sciences and technology ; Expert systems ; Knowledge representation ; Markov analysis ; Mathematics ; Multivariate analysis ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Studies ; Theoretical computing</subject><ispartof>Journal of classification, 2006-09, Vol.23 (2), p.199-220</ispartof><rights>2007 INIST-CNRS</rights><rights>Springer Science + Business Media Inc. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-cbc9442446d531b5ef5d74ffe010a66ec0d16efcc5a42d69cc7a586eb42bf7f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18312443$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KRZANOWSKI, Wojtek J</creatorcontrib><creatorcontrib>FIELDSEND, Jonathan E</creatorcontrib><creatorcontrib>BAILEY, Trevor C</creatorcontrib><creatorcontrib>EVERSON, Richard M</creatorcontrib><creatorcontrib>PARTRIDGE, Derek</creatorcontrib><creatorcontrib>SCHETININ, Vitaly</creatorcontrib><title>Confidence in classification : A bayesian approach</title><title>Journal of classification</title><description>Bayesian classification is currently of considerable interest. It provides a strategy for eliminating the uncertainty associated with a particular choice of classifiermodel parameters, and is the optimal decision-theoretic choice under certain circumstances when there is no single "true" classifier for a given data set. Modern computing capabilities can easily support the Markov chain Monte Carlo sampling that is necessary to carry out the calculations involved, but the information available in these samples is not at present being fully utilised. We show how it can be allied to known results concerning the "reject option" in order to produce an assessment of the confidence that can be ascribed to particular classifications, and how these confidence measures can be used to compare the performances of classifiers. Incorporating these confidence measures can alter the apparent ranking of classifiers as given by straightforward success or error rates. Several possible methods for obtaining confidence assessments are described, and compared on a range of data sets using the Bayesian probabilistic nearest-neighbour classifier.[PUBLICATION ABSTRACT]</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Automatic classification</subject><subject>Bayesian analysis</subject><subject>Bayesian techniques</subject><subject>Computer applications</subject><subject>Computer science; control theory; systems</subject><subject>Confidence</subject><subject>Decision theory</subject><subject>Exact sciences and technology</subject><subject>Expert systems</subject><subject>Knowledge representation</subject><subject>Markov analysis</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0176-4268</issn><issn>1432-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE1LAzEQhoMoWKs_wNsi6G012clH11spfkHBS-9hdjbBlG22Ju2h_96UCoKHYS7POx8PY7eCPwrOzVPmHJSpOdelBNRwxiZCQlMLkHDOJlwYXctGzy7ZVc5rXjJamwlrFmP0oXeRXBViRQPmHHwg3IUxVs_VvOrw4HLAWOF2m0akr2t24XHI7ua3T9nq9WW1eK-Xn28fi_myJjB6V1NHrZSNlLpXIDrlvOqN9N5xwVFrR7wX2nkihbLpdUtkUM2062TTeeNhyh5OY8vW773LO7sJmdwwYHTjPltltNSmbQt49w9cj_sUy2nWAHClClkgcYIojTkn5-02hQ2mgxXcHg3ak0FbDNqjQQslc_87GDPh4BNGCvkvOANR3gP4AUGHb3E</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>KRZANOWSKI, Wojtek J</creator><creator>FIELDSEND, Jonathan E</creator><creator>BAILEY, Trevor C</creator><creator>EVERSON, Richard M</creator><creator>PARTRIDGE, Derek</creator><creator>SCHETININ, Vitaly</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20060901</creationdate><title>Confidence in classification : A bayesian approach</title><author>KRZANOWSKI, Wojtek J ; FIELDSEND, Jonathan E ; BAILEY, Trevor C ; EVERSON, Richard M ; PARTRIDGE, Derek ; SCHETININ, Vitaly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-cbc9442446d531b5ef5d74ffe010a66ec0d16efcc5a42d69cc7a586eb42bf7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Automatic classification</topic><topic>Bayesian analysis</topic><topic>Bayesian techniques</topic><topic>Computer applications</topic><topic>Computer science; control theory; systems</topic><topic>Confidence</topic><topic>Decision theory</topic><topic>Exact sciences and technology</topic><topic>Expert systems</topic><topic>Knowledge representation</topic><topic>Markov analysis</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KRZANOWSKI, Wojtek J</creatorcontrib><creatorcontrib>FIELDSEND, Jonathan E</creatorcontrib><creatorcontrib>BAILEY, Trevor C</creatorcontrib><creatorcontrib>EVERSON, Richard M</creatorcontrib><creatorcontrib>PARTRIDGE, Derek</creatorcontrib><creatorcontrib>SCHETININ, Vitaly</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of classification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KRZANOWSKI, Wojtek J</au><au>FIELDSEND, Jonathan E</au><au>BAILEY, Trevor C</au><au>EVERSON, Richard M</au><au>PARTRIDGE, Derek</au><au>SCHETININ, Vitaly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence in classification : A bayesian approach</atitle><jtitle>Journal of classification</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>23</volume><issue>2</issue><spage>199</spage><epage>220</epage><pages>199-220</pages><issn>0176-4268</issn><eissn>1432-1343</eissn><abstract>Bayesian classification is currently of considerable interest. It provides a strategy for eliminating the uncertainty associated with a particular choice of classifiermodel parameters, and is the optimal decision-theoretic choice under certain circumstances when there is no single "true" classifier for a given data set. Modern computing capabilities can easily support the Markov chain Monte Carlo sampling that is necessary to carry out the calculations involved, but the information available in these samples is not at present being fully utilised. We show how it can be allied to known results concerning the "reject option" in order to produce an assessment of the confidence that can be ascribed to particular classifications, and how these confidence measures can be used to compare the performances of classifiers. Incorporating these confidence measures can alter the apparent ranking of classifiers as given by straightforward success or error rates. Several possible methods for obtaining confidence assessments are described, and compared on a range of data sets using the Bayesian probabilistic nearest-neighbour classifier.[PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s00357-006-0013-3</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0176-4268
ispartof Journal of classification, 2006-09, Vol.23 (2), p.199-220
issn 0176-4268
1432-1343
language eng
recordid cdi_proquest_miscellaneous_57646799
source SpringerNature Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Automatic classification
Bayesian analysis
Bayesian techniques
Computer applications
Computer science
control theory
systems
Confidence
Decision theory
Exact sciences and technology
Expert systems
Knowledge representation
Markov analysis
Mathematics
Multivariate analysis
Probability and statistics
Sciences and techniques of general use
Statistics
Studies
Theoretical computing
title Confidence in classification : A bayesian approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20in%20classification%20:%20A%20bayesian%20approach&rft.jtitle=Journal%20of%20classification&rft.au=KRZANOWSKI,%20Wojtek%20J&rft.date=2006-09-01&rft.volume=23&rft.issue=2&rft.spage=199&rft.epage=220&rft.pages=199-220&rft.issn=0176-4268&rft.eissn=1432-1343&rft_id=info:doi/10.1007/s00357-006-0013-3&rft_dat=%3Cproquest_cross%3E2094124911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733055576&rft_id=info:pmid/&rfr_iscdi=true