Law, learning and representation
In machine learning terms, reasoning in legal cases can be compared to a lazy learning approach in which courts defer deciding how to generalize beyond the prior cases until the facts of a new case are observed. The HYPO family of systems implements a “lazy” approach since they defer making argument...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence 2003-11, Vol.150 (1), p.17-58 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Artificial intelligence |
container_volume | 150 |
creator | Ashley, Kevin D. Rissland, Edwina L. |
description | In machine learning terms, reasoning in legal cases can be compared to a lazy learning approach in which courts defer deciding how to generalize beyond the prior cases until the facts of a new case are observed. The HYPO family of systems implements a “lazy” approach since they defer making arguments how to decide a problem until the programs have positioned a new problem with respect to similar past cases. In a kind of “reflective adjustment”, they fit the new problem into a patchwork of past case decisions, comparing cases in order to reason about the legal significance of the relevant similarities and differences. Empirical evidence from diverse experiments shows that for purposes of teaching legal argumentation and performing legal information retrieval, HYPO-style systems' lazy learning approach and implementation of aspects of reflective adjustment can be very effective. |
doi_str_mv | 10.1016/S0004-3702(03)00109-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57590042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370203001097</els_id><sourcerecordid>57590042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-47dc1fb6b554c51f7bb1bb230c1cbd5941dc97974640aa8a00e05d0eb909d06d3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKErUbB6b9M0k5XI4AsGXKjrkMetRDrpmFTFf29nRty6ulw458D3MXaMcIGAzeUTANQll1CdAj8DQFCl3GETnMmqlKrCXTb5i-yzg5zfxpcrhRNWLMzXedGRSTHE18JEXyRaJcoUBzOEPh6yvdZ0mY5-75S93N48z-_LxePdw_x6UTo-E0NZS--wtY0VonYCW2ktWltxcOisF6pG75RUsm5qMGZmAAiEB7IKlIfG8yk72e6uUv_-QXnQy5AddZ2J1H9kLaRQI0M1BsU26FKfc6JWr1JYmvStEfTah9740GtYDVxvfGg59q62PRopPgMlnV2g6MiHRG7Qvg__LPwAT8Jl1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>57590042</pqid></control><display><type>article</type><title>Law, learning and representation</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ashley, Kevin D. ; Rissland, Edwina L.</creator><creatorcontrib>Ashley, Kevin D. ; Rissland, Edwina L.</creatorcontrib><description>In machine learning terms, reasoning in legal cases can be compared to a lazy learning approach in which courts defer deciding how to generalize beyond the prior cases until the facts of a new case are observed. The HYPO family of systems implements a “lazy” approach since they defer making arguments how to decide a problem until the programs have positioned a new problem with respect to similar past cases. In a kind of “reflective adjustment”, they fit the new problem into a patchwork of past case decisions, comparing cases in order to reason about the legal significance of the relevant similarities and differences. Empirical evidence from diverse experiments shows that for purposes of teaching legal argumentation and performing legal information retrieval, HYPO-style systems' lazy learning approach and implementation of aspects of reflective adjustment can be very effective.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/S0004-3702(03)00109-7</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Argument ; Artificial intelligence ; Case-based reasoning ; Computer applications ; Expert systems ; Law ; Lazy learning ; Legal information retrieval ; Legal knowledge representation ; Legal reasoning ; Reflective adjustment ; Version spaces</subject><ispartof>Artificial intelligence, 2003-11, Vol.150 (1), p.17-58</ispartof><rights>2003 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-47dc1fb6b554c51f7bb1bb230c1cbd5941dc97974640aa8a00e05d0eb909d06d3</citedby><cites>FETCH-LOGICAL-c385t-47dc1fb6b554c51f7bb1bb230c1cbd5941dc97974640aa8a00e05d0eb909d06d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0004-3702(03)00109-7$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ashley, Kevin D.</creatorcontrib><creatorcontrib>Rissland, Edwina L.</creatorcontrib><title>Law, learning and representation</title><title>Artificial intelligence</title><description>In machine learning terms, reasoning in legal cases can be compared to a lazy learning approach in which courts defer deciding how to generalize beyond the prior cases until the facts of a new case are observed. The HYPO family of systems implements a “lazy” approach since they defer making arguments how to decide a problem until the programs have positioned a new problem with respect to similar past cases. In a kind of “reflective adjustment”, they fit the new problem into a patchwork of past case decisions, comparing cases in order to reason about the legal significance of the relevant similarities and differences. Empirical evidence from diverse experiments shows that for purposes of teaching legal argumentation and performing legal information retrieval, HYPO-style systems' lazy learning approach and implementation of aspects of reflective adjustment can be very effective.</description><subject>Argument</subject><subject>Artificial intelligence</subject><subject>Case-based reasoning</subject><subject>Computer applications</subject><subject>Expert systems</subject><subject>Law</subject><subject>Lazy learning</subject><subject>Legal information retrieval</subject><subject>Legal knowledge representation</subject><subject>Legal reasoning</subject><subject>Reflective adjustment</subject><subject>Version spaces</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKErUbB6b9M0k5XI4AsGXKjrkMetRDrpmFTFf29nRty6ulw458D3MXaMcIGAzeUTANQll1CdAj8DQFCl3GETnMmqlKrCXTb5i-yzg5zfxpcrhRNWLMzXedGRSTHE18JEXyRaJcoUBzOEPh6yvdZ0mY5-75S93N48z-_LxePdw_x6UTo-E0NZS--wtY0VonYCW2ktWltxcOisF6pG75RUsm5qMGZmAAiEB7IKlIfG8yk72e6uUv_-QXnQy5AddZ2J1H9kLaRQI0M1BsU26FKfc6JWr1JYmvStEfTah9740GtYDVxvfGg59q62PRopPgMlnV2g6MiHRG7Qvg__LPwAT8Jl1Q</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Ashley, Kevin D.</creator><creator>Rissland, Edwina L.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20031101</creationdate><title>Law, learning and representation</title><author>Ashley, Kevin D. ; Rissland, Edwina L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-47dc1fb6b554c51f7bb1bb230c1cbd5941dc97974640aa8a00e05d0eb909d06d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Argument</topic><topic>Artificial intelligence</topic><topic>Case-based reasoning</topic><topic>Computer applications</topic><topic>Expert systems</topic><topic>Law</topic><topic>Lazy learning</topic><topic>Legal information retrieval</topic><topic>Legal knowledge representation</topic><topic>Legal reasoning</topic><topic>Reflective adjustment</topic><topic>Version spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashley, Kevin D.</creatorcontrib><creatorcontrib>Rissland, Edwina L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashley, Kevin D.</au><au>Rissland, Edwina L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Law, learning and representation</atitle><jtitle>Artificial intelligence</jtitle><date>2003-11-01</date><risdate>2003</risdate><volume>150</volume><issue>1</issue><spage>17</spage><epage>58</epage><pages>17-58</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>In machine learning terms, reasoning in legal cases can be compared to a lazy learning approach in which courts defer deciding how to generalize beyond the prior cases until the facts of a new case are observed. The HYPO family of systems implements a “lazy” approach since they defer making arguments how to decide a problem until the programs have positioned a new problem with respect to similar past cases. In a kind of “reflective adjustment”, they fit the new problem into a patchwork of past case decisions, comparing cases in order to reason about the legal significance of the relevant similarities and differences. Empirical evidence from diverse experiments shows that for purposes of teaching legal argumentation and performing legal information retrieval, HYPO-style systems' lazy learning approach and implementation of aspects of reflective adjustment can be very effective.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0004-3702(03)00109-7</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-3702 |
ispartof | Artificial intelligence, 2003-11, Vol.150 (1), p.17-58 |
issn | 0004-3702 1872-7921 |
language | eng |
recordid | cdi_proquest_miscellaneous_57590042 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Argument Artificial intelligence Case-based reasoning Computer applications Expert systems Law Lazy learning Legal information retrieval Legal knowledge representation Legal reasoning Reflective adjustment Version spaces |
title | Law, learning and representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Law,%20learning%20and%20representation&rft.jtitle=Artificial%20intelligence&rft.au=Ashley,%20Kevin%20D.&rft.date=2003-11-01&rft.volume=150&rft.issue=1&rft.spage=17&rft.epage=58&rft.pages=17-58&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/S0004-3702(03)00109-7&rft_dat=%3Cproquest_cross%3E57590042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=57590042&rft_id=info:pmid/&rft_els_id=S0004370203001097&rfr_iscdi=true |