Law, learning and representation

In machine learning terms, reasoning in legal cases can be compared to a lazy learning approach in which courts defer deciding how to generalize beyond the prior cases until the facts of a new case are observed. The HYPO family of systems implements a “lazy” approach since they defer making argument...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2003-11, Vol.150 (1), p.17-58
Hauptverfasser: Ashley, Kevin D., Rissland, Edwina L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 17
container_title Artificial intelligence
container_volume 150
creator Ashley, Kevin D.
Rissland, Edwina L.
description In machine learning terms, reasoning in legal cases can be compared to a lazy learning approach in which courts defer deciding how to generalize beyond the prior cases until the facts of a new case are observed. The HYPO family of systems implements a “lazy” approach since they defer making arguments how to decide a problem until the programs have positioned a new problem with respect to similar past cases. In a kind of “reflective adjustment”, they fit the new problem into a patchwork of past case decisions, comparing cases in order to reason about the legal significance of the relevant similarities and differences. Empirical evidence from diverse experiments shows that for purposes of teaching legal argumentation and performing legal information retrieval, HYPO-style systems' lazy learning approach and implementation of aspects of reflective adjustment can be very effective.
doi_str_mv 10.1016/S0004-3702(03)00109-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57590042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370203001097</els_id><sourcerecordid>57590042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-47dc1fb6b554c51f7bb1bb230c1cbd5941dc97974640aa8a00e05d0eb909d06d3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKErUbB6b9M0k5XI4AsGXKjrkMetRDrpmFTFf29nRty6ulw458D3MXaMcIGAzeUTANQll1CdAj8DQFCl3GETnMmqlKrCXTb5i-yzg5zfxpcrhRNWLMzXedGRSTHE18JEXyRaJcoUBzOEPh6yvdZ0mY5-75S93N48z-_LxePdw_x6UTo-E0NZS--wtY0VonYCW2ktWltxcOisF6pG75RUsm5qMGZmAAiEB7IKlIfG8yk72e6uUv_-QXnQy5AddZ2J1H9kLaRQI0M1BsU26FKfc6JWr1JYmvStEfTah9740GtYDVxvfGg59q62PRopPgMlnV2g6MiHRG7Qvg__LPwAT8Jl1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>57590042</pqid></control><display><type>article</type><title>Law, learning and representation</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ashley, Kevin D. ; Rissland, Edwina L.</creator><creatorcontrib>Ashley, Kevin D. ; Rissland, Edwina L.</creatorcontrib><description>In machine learning terms, reasoning in legal cases can be compared to a lazy learning approach in which courts defer deciding how to generalize beyond the prior cases until the facts of a new case are observed. The HYPO family of systems implements a “lazy” approach since they defer making arguments how to decide a problem until the programs have positioned a new problem with respect to similar past cases. In a kind of “reflective adjustment”, they fit the new problem into a patchwork of past case decisions, comparing cases in order to reason about the legal significance of the relevant similarities and differences. Empirical evidence from diverse experiments shows that for purposes of teaching legal argumentation and performing legal information retrieval, HYPO-style systems' lazy learning approach and implementation of aspects of reflective adjustment can be very effective.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/S0004-3702(03)00109-7</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Argument ; Artificial intelligence ; Case-based reasoning ; Computer applications ; Expert systems ; Law ; Lazy learning ; Legal information retrieval ; Legal knowledge representation ; Legal reasoning ; Reflective adjustment ; Version spaces</subject><ispartof>Artificial intelligence, 2003-11, Vol.150 (1), p.17-58</ispartof><rights>2003 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-47dc1fb6b554c51f7bb1bb230c1cbd5941dc97974640aa8a00e05d0eb909d06d3</citedby><cites>FETCH-LOGICAL-c385t-47dc1fb6b554c51f7bb1bb230c1cbd5941dc97974640aa8a00e05d0eb909d06d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0004-3702(03)00109-7$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ashley, Kevin D.</creatorcontrib><creatorcontrib>Rissland, Edwina L.</creatorcontrib><title>Law, learning and representation</title><title>Artificial intelligence</title><description>In machine learning terms, reasoning in legal cases can be compared to a lazy learning approach in which courts defer deciding how to generalize beyond the prior cases until the facts of a new case are observed. The HYPO family of systems implements a “lazy” approach since they defer making arguments how to decide a problem until the programs have positioned a new problem with respect to similar past cases. In a kind of “reflective adjustment”, they fit the new problem into a patchwork of past case decisions, comparing cases in order to reason about the legal significance of the relevant similarities and differences. Empirical evidence from diverse experiments shows that for purposes of teaching legal argumentation and performing legal information retrieval, HYPO-style systems' lazy learning approach and implementation of aspects of reflective adjustment can be very effective.</description><subject>Argument</subject><subject>Artificial intelligence</subject><subject>Case-based reasoning</subject><subject>Computer applications</subject><subject>Expert systems</subject><subject>Law</subject><subject>Lazy learning</subject><subject>Legal information retrieval</subject><subject>Legal knowledge representation</subject><subject>Legal reasoning</subject><subject>Reflective adjustment</subject><subject>Version spaces</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKErUbB6b9M0k5XI4AsGXKjrkMetRDrpmFTFf29nRty6ulw458D3MXaMcIGAzeUTANQll1CdAj8DQFCl3GETnMmqlKrCXTb5i-yzg5zfxpcrhRNWLMzXedGRSTHE18JEXyRaJcoUBzOEPh6yvdZ0mY5-75S93N48z-_LxePdw_x6UTo-E0NZS--wtY0VonYCW2ktWltxcOisF6pG75RUsm5qMGZmAAiEB7IKlIfG8yk72e6uUv_-QXnQy5AddZ2J1H9kLaRQI0M1BsU26FKfc6JWr1JYmvStEfTah9740GtYDVxvfGg59q62PRopPgMlnV2g6MiHRG7Qvg__LPwAT8Jl1Q</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Ashley, Kevin D.</creator><creator>Rissland, Edwina L.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20031101</creationdate><title>Law, learning and representation</title><author>Ashley, Kevin D. ; Rissland, Edwina L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-47dc1fb6b554c51f7bb1bb230c1cbd5941dc97974640aa8a00e05d0eb909d06d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Argument</topic><topic>Artificial intelligence</topic><topic>Case-based reasoning</topic><topic>Computer applications</topic><topic>Expert systems</topic><topic>Law</topic><topic>Lazy learning</topic><topic>Legal information retrieval</topic><topic>Legal knowledge representation</topic><topic>Legal reasoning</topic><topic>Reflective adjustment</topic><topic>Version spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashley, Kevin D.</creatorcontrib><creatorcontrib>Rissland, Edwina L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashley, Kevin D.</au><au>Rissland, Edwina L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Law, learning and representation</atitle><jtitle>Artificial intelligence</jtitle><date>2003-11-01</date><risdate>2003</risdate><volume>150</volume><issue>1</issue><spage>17</spage><epage>58</epage><pages>17-58</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>In machine learning terms, reasoning in legal cases can be compared to a lazy learning approach in which courts defer deciding how to generalize beyond the prior cases until the facts of a new case are observed. The HYPO family of systems implements a “lazy” approach since they defer making arguments how to decide a problem until the programs have positioned a new problem with respect to similar past cases. In a kind of “reflective adjustment”, they fit the new problem into a patchwork of past case decisions, comparing cases in order to reason about the legal significance of the relevant similarities and differences. Empirical evidence from diverse experiments shows that for purposes of teaching legal argumentation and performing legal information retrieval, HYPO-style systems' lazy learning approach and implementation of aspects of reflective adjustment can be very effective.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0004-3702(03)00109-7</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 2003-11, Vol.150 (1), p.17-58
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_miscellaneous_57590042
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Argument
Artificial intelligence
Case-based reasoning
Computer applications
Expert systems
Law
Lazy learning
Legal information retrieval
Legal knowledge representation
Legal reasoning
Reflective adjustment
Version spaces
title Law, learning and representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Law,%20learning%20and%20representation&rft.jtitle=Artificial%20intelligence&rft.au=Ashley,%20Kevin%20D.&rft.date=2003-11-01&rft.volume=150&rft.issue=1&rft.spage=17&rft.epage=58&rft.pages=17-58&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/S0004-3702(03)00109-7&rft_dat=%3Cproquest_cross%3E57590042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=57590042&rft_id=info:pmid/&rft_els_id=S0004370203001097&rfr_iscdi=true