Clustered linear regression

Clustered linear regression (CLR) is a new machine learning algorithm that improves the accuracy of classical linear regression by partitioning training space into subspaces. CLR makes some assumptions about the domain and the data set. Firstly, target value is assumed to be a function of feature va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2002-03, Vol.15 (3), p.169-175
Hauptverfasser: Ari, Bertan, Güvenir, H.Altay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 3
container_start_page 169
container_title Knowledge-based systems
container_volume 15
creator Ari, Bertan
Güvenir, H.Altay
description Clustered linear regression (CLR) is a new machine learning algorithm that improves the accuracy of classical linear regression by partitioning training space into subspaces. CLR makes some assumptions about the domain and the data set. Firstly, target value is assumed to be a function of feature values. Second assumption is that there are some linear approximations for this function in each subspace. Finally, there are enough training instances to determine subspaces and their linear approximations successfully. Tests indicate that if these approximations hold, CLR outperforms all other well-known machine-learning algorithms. Partitioning may continue until linear approximation fits all the instances in the training set — that generally occurs when the number of instances in the subspace is less than or equal to the number of features plus one. In other case, each new subspace will have a better fitting linear approximation. However, this will cause over fitting and gives less accurate results for the test instances. The stopping situation can be determined as no significant decrease or an increase in relative error. CLR uses a small portion of the training instances to determine the number of subspaces. The necessity of high number of training instances makes this algorithm suitable for data mining applications.
doi_str_mv 10.1016/S0950-7051(01)00154-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57586590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095070510100154X</els_id><sourcerecordid>57586590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-dc3eba4d93878d2ded6fc2b163e4f77ba1911a5078530d1c5c2fc89d28dc1f063</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-AhFmJbqIvpc2TboSKX7BgAsVZhfS5FUinXZMOsL8ezuOuBUevM25F-5h7AzhCgGL6xcoJXAFEi8ALwFQ5nyxxyaoleAqh3KfTf6QQ3aU0gcACIF6wk6rdp0GiuRnbejIxlmk90gphb47ZgeNbROd_P4pe7u_e60e-fz54am6nXOXaTlw7zKqbe7LTCvthSdfNE7UWGSUN0rVFktEK0FpmYFHJ51onC690N5hA0U2Zee73lXsP9eUBrMMyVHb2o76dTJSSV3IEkZQ7kAX-5QiNWYVw9LGjUEwWxXmR4XZ7jQw3laFWYy5m12OxhVfgaJJLlDnyIdIbjC-D_80fAPgJWUp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>57586590</pqid></control><display><type>article</type><title>Clustered linear regression</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Ari, Bertan ; Güvenir, H.Altay</creator><creatorcontrib>Ari, Bertan ; Güvenir, H.Altay</creatorcontrib><description>Clustered linear regression (CLR) is a new machine learning algorithm that improves the accuracy of classical linear regression by partitioning training space into subspaces. CLR makes some assumptions about the domain and the data set. Firstly, target value is assumed to be a function of feature values. Second assumption is that there are some linear approximations for this function in each subspace. Finally, there are enough training instances to determine subspaces and their linear approximations successfully. Tests indicate that if these approximations hold, CLR outperforms all other well-known machine-learning algorithms. Partitioning may continue until linear approximation fits all the instances in the training set — that generally occurs when the number of instances in the subspace is less than or equal to the number of features plus one. In other case, each new subspace will have a better fitting linear approximation. However, this will cause over fitting and gives less accurate results for the test instances. The stopping situation can be determined as no significant decrease or an increase in relative error. CLR uses a small portion of the training instances to determine the number of subspaces. The necessity of high number of training instances makes this algorithm suitable for data mining applications.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/S0950-7051(01)00154-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Clustering Linear regression ; Eager approach ; Machine learning ; Machine learning algorithm</subject><ispartof>Knowledge-based systems, 2002-03, Vol.15 (3), p.169-175</ispartof><rights>2002 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-dc3eba4d93878d2ded6fc2b163e4f77ba1911a5078530d1c5c2fc89d28dc1f063</citedby><cites>FETCH-LOGICAL-c385t-dc3eba4d93878d2ded6fc2b163e4f77ba1911a5078530d1c5c2fc89d28dc1f063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0950-7051(01)00154-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ari, Bertan</creatorcontrib><creatorcontrib>Güvenir, H.Altay</creatorcontrib><title>Clustered linear regression</title><title>Knowledge-based systems</title><description>Clustered linear regression (CLR) is a new machine learning algorithm that improves the accuracy of classical linear regression by partitioning training space into subspaces. CLR makes some assumptions about the domain and the data set. Firstly, target value is assumed to be a function of feature values. Second assumption is that there are some linear approximations for this function in each subspace. Finally, there are enough training instances to determine subspaces and their linear approximations successfully. Tests indicate that if these approximations hold, CLR outperforms all other well-known machine-learning algorithms. Partitioning may continue until linear approximation fits all the instances in the training set — that generally occurs when the number of instances in the subspace is less than or equal to the number of features plus one. In other case, each new subspace will have a better fitting linear approximation. However, this will cause over fitting and gives less accurate results for the test instances. The stopping situation can be determined as no significant decrease or an increase in relative error. CLR uses a small portion of the training instances to determine the number of subspaces. The necessity of high number of training instances makes this algorithm suitable for data mining applications.</description><subject>Algorithms</subject><subject>Clustering Linear regression</subject><subject>Eager approach</subject><subject>Machine learning</subject><subject>Machine learning algorithm</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-AhFmJbqIvpc2TboSKX7BgAsVZhfS5FUinXZMOsL8ezuOuBUevM25F-5h7AzhCgGL6xcoJXAFEi8ALwFQ5nyxxyaoleAqh3KfTf6QQ3aU0gcACIF6wk6rdp0GiuRnbejIxlmk90gphb47ZgeNbROd_P4pe7u_e60e-fz54am6nXOXaTlw7zKqbe7LTCvthSdfNE7UWGSUN0rVFktEK0FpmYFHJ51onC690N5hA0U2Zee73lXsP9eUBrMMyVHb2o76dTJSSV3IEkZQ7kAX-5QiNWYVw9LGjUEwWxXmR4XZ7jQw3laFWYy5m12OxhVfgaJJLlDnyIdIbjC-D_80fAPgJWUp</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Ari, Bertan</creator><creator>Güvenir, H.Altay</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20020301</creationdate><title>Clustered linear regression</title><author>Ari, Bertan ; Güvenir, H.Altay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-dc3eba4d93878d2ded6fc2b163e4f77ba1911a5078530d1c5c2fc89d28dc1f063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Clustering Linear regression</topic><topic>Eager approach</topic><topic>Machine learning</topic><topic>Machine learning algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ari, Bertan</creatorcontrib><creatorcontrib>Güvenir, H.Altay</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ari, Bertan</au><au>Güvenir, H.Altay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustered linear regression</atitle><jtitle>Knowledge-based systems</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>15</volume><issue>3</issue><spage>169</spage><epage>175</epage><pages>169-175</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Clustered linear regression (CLR) is a new machine learning algorithm that improves the accuracy of classical linear regression by partitioning training space into subspaces. CLR makes some assumptions about the domain and the data set. Firstly, target value is assumed to be a function of feature values. Second assumption is that there are some linear approximations for this function in each subspace. Finally, there are enough training instances to determine subspaces and their linear approximations successfully. Tests indicate that if these approximations hold, CLR outperforms all other well-known machine-learning algorithms. Partitioning may continue until linear approximation fits all the instances in the training set — that generally occurs when the number of instances in the subspace is less than or equal to the number of features plus one. In other case, each new subspace will have a better fitting linear approximation. However, this will cause over fitting and gives less accurate results for the test instances. The stopping situation can be determined as no significant decrease or an increase in relative error. CLR uses a small portion of the training instances to determine the number of subspaces. The necessity of high number of training instances makes this algorithm suitable for data mining applications.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0950-7051(01)00154-X</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2002-03, Vol.15 (3), p.169-175
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_miscellaneous_57586590
source ScienceDirect Freedom Collection (Elsevier)
subjects Algorithms
Clustering Linear regression
Eager approach
Machine learning
Machine learning algorithm
title Clustered linear regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustered%20linear%20regression&rft.jtitle=Knowledge-based%20systems&rft.au=Ari,%20Bertan&rft.date=2002-03-01&rft.volume=15&rft.issue=3&rft.spage=169&rft.epage=175&rft.pages=169-175&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/S0950-7051(01)00154-X&rft_dat=%3Cproquest_cross%3E57586590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=57586590&rft_id=info:pmid/&rft_els_id=S095070510100154X&rfr_iscdi=true