Enhancing disjunctive logic programming systems by SAT checkers
Disjunctive logic programming (DLP) with stable model semantics is a powerful nonmonotonic formalism for knowledge representation and reasoning. Reasoning with DLP is harder than with normal (∨-free) logic programs, because stable model checking—deciding whether a given model is a stable model of a...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence 2003-12, Vol.151 (1), p.177-212 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 1 |
container_start_page | 177 |
container_title | Artificial intelligence |
container_volume | 151 |
creator | Koch, Christoph Leone, Nicola Pfeifer, Gerald |
description | Disjunctive logic programming (DLP) with stable model semantics is a powerful nonmonotonic formalism for knowledge representation and reasoning. Reasoning with DLP is harder than with normal (∨-free) logic programs, because
stable model checking—deciding whether a given model is a stable model of a propositional DLP program—is co-NP-complete, while it is polynomial for normal logic programs.
This paper proposes a new transformation
Γ
M(
P)
, which reduces stable model checking to UNSAT—i.e., to deciding whether a given CNF formula is unsatisfiable. The stability of a model
M of a program
P
thus can be verified by calling a Satisfiability Checker on the CNF formula
Γ
M(
P)
. The transformation is parsimonious (i.e., no new symbol is added), and efficiently computable, as it runs in logarithmic space (and therefore in polynomial time). Moreover, the size of the generated CNF formula never exceeds the size of the input (and is usually much smaller). We complement this transformation with modular evaluation results, which allow for efficient handling of large real-world reasoning problems.
The proposed approach to stable model checking has been implemented in
DLV—a state-of-the-art implementation of DLP. A number of experiments and benchmarks have been run using SATZ as Satisfiability checker. The results of the experiments are very positive and confirm the usefulness of our techniques. |
doi_str_mv | 10.1016/S0004-3702(03)00078-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57560457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000437020300078X</els_id><sourcerecordid>57560457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-f04f9a80287e629e43cfb1a41ef400fdbc9bdb368c6b31c36e6d4fb56a486a0f3</originalsourceid><addsrcrecordid>eNqFkE9rAjEQxUNpodb2IxT2VNrDtskmm2RPImL_gNCDFryFbHaise6uTVbBb9-opVdPw2N-7zHzELon-Jlgwl-mGGOWUoGzR0yfohAynV-gHpEiS0WRkUvU-0eu0U0IqyhpUZAeGoybpW6MaxZJ5cJq25jO7SBZtwtnko1vF17X9WEb9qGDOiTlPpkOZ4lZgvkGH27RldXrAHd_s4--Xsez0Xs6-Xz7GA0nqaG86FKLmS20xJkUwLMCGDW2JJoRsAxjW5WmKKuScml4SUn0AK-YLXOumeQaW9pHD6fceNPPFkKnahcMrNe6gXYbVC5yjlkuzoKZkDJyeQTzE2h8G4IHqzbe1drvFcHq0Ks69qoOpSlM1bFXNY--wckH8d2dA6-CcdAYqJwH06mqdWcSfgEZwoAG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27884575</pqid></control><display><type>article</type><title>Enhancing disjunctive logic programming systems by SAT checkers</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Koch, Christoph ; Leone, Nicola ; Pfeifer, Gerald</creator><creatorcontrib>Koch, Christoph ; Leone, Nicola ; Pfeifer, Gerald</creatorcontrib><description>Disjunctive logic programming (DLP) with stable model semantics is a powerful nonmonotonic formalism for knowledge representation and reasoning. Reasoning with DLP is harder than with normal (∨-free) logic programs, because
stable model checking—deciding whether a given model is a stable model of a propositional DLP program—is co-NP-complete, while it is polynomial for normal logic programs.
This paper proposes a new transformation
Γ
M(
P)
, which reduces stable model checking to UNSAT—i.e., to deciding whether a given CNF formula is unsatisfiable. The stability of a model
M of a program
P
thus can be verified by calling a Satisfiability Checker on the CNF formula
Γ
M(
P)
. The transformation is parsimonious (i.e., no new symbol is added), and efficiently computable, as it runs in logarithmic space (and therefore in polynomial time). Moreover, the size of the generated CNF formula never exceeds the size of the input (and is usually much smaller). We complement this transformation with modular evaluation results, which allow for efficient handling of large real-world reasoning problems.
The proposed approach to stable model checking has been implemented in
DLV—a state-of-the-art implementation of DLP. A number of experiments and benchmarks have been run using SATZ as Satisfiability checker. The results of the experiments are very positive and confirm the usefulness of our techniques.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/S0004-3702(03)00078-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Answer set programs ; Artificial intelligence ; Disjunctive logic programming ; Head-cycle-free programs ; Nonmonotonic reasoning ; Stable model checking</subject><ispartof>Artificial intelligence, 2003-12, Vol.151 (1), p.177-212</ispartof><rights>2003 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-f04f9a80287e629e43cfb1a41ef400fdbc9bdb368c6b31c36e6d4fb56a486a0f3</citedby><cites>FETCH-LOGICAL-c369t-f04f9a80287e629e43cfb1a41ef400fdbc9bdb368c6b31c36e6d4fb56a486a0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0004-3702(03)00078-X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Koch, Christoph</creatorcontrib><creatorcontrib>Leone, Nicola</creatorcontrib><creatorcontrib>Pfeifer, Gerald</creatorcontrib><title>Enhancing disjunctive logic programming systems by SAT checkers</title><title>Artificial intelligence</title><description>Disjunctive logic programming (DLP) with stable model semantics is a powerful nonmonotonic formalism for knowledge representation and reasoning. Reasoning with DLP is harder than with normal (∨-free) logic programs, because
stable model checking—deciding whether a given model is a stable model of a propositional DLP program—is co-NP-complete, while it is polynomial for normal logic programs.
This paper proposes a new transformation
Γ
M(
P)
, which reduces stable model checking to UNSAT—i.e., to deciding whether a given CNF formula is unsatisfiable. The stability of a model
M of a program
P
thus can be verified by calling a Satisfiability Checker on the CNF formula
Γ
M(
P)
. The transformation is parsimonious (i.e., no new symbol is added), and efficiently computable, as it runs in logarithmic space (and therefore in polynomial time). Moreover, the size of the generated CNF formula never exceeds the size of the input (and is usually much smaller). We complement this transformation with modular evaluation results, which allow for efficient handling of large real-world reasoning problems.
The proposed approach to stable model checking has been implemented in
DLV—a state-of-the-art implementation of DLP. A number of experiments and benchmarks have been run using SATZ as Satisfiability checker. The results of the experiments are very positive and confirm the usefulness of our techniques.</description><subject>Answer set programs</subject><subject>Artificial intelligence</subject><subject>Disjunctive logic programming</subject><subject>Head-cycle-free programs</subject><subject>Nonmonotonic reasoning</subject><subject>Stable model checking</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rAjEQxUNpodb2IxT2VNrDtskmm2RPImL_gNCDFryFbHaise6uTVbBb9-opVdPw2N-7zHzELon-Jlgwl-mGGOWUoGzR0yfohAynV-gHpEiS0WRkUvU-0eu0U0IqyhpUZAeGoybpW6MaxZJ5cJq25jO7SBZtwtnko1vF17X9WEb9qGDOiTlPpkOZ4lZgvkGH27RldXrAHd_s4--Xsez0Xs6-Xz7GA0nqaG86FKLmS20xJkUwLMCGDW2JJoRsAxjW5WmKKuScml4SUn0AK-YLXOumeQaW9pHD6fceNPPFkKnahcMrNe6gXYbVC5yjlkuzoKZkDJyeQTzE2h8G4IHqzbe1drvFcHq0Ks69qoOpSlM1bFXNY--wckH8d2dA6-CcdAYqJwH06mqdWcSfgEZwoAG</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Koch, Christoph</creator><creator>Leone, Nicola</creator><creator>Pfeifer, Gerald</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20031201</creationdate><title>Enhancing disjunctive logic programming systems by SAT checkers</title><author>Koch, Christoph ; Leone, Nicola ; Pfeifer, Gerald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-f04f9a80287e629e43cfb1a41ef400fdbc9bdb368c6b31c36e6d4fb56a486a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Answer set programs</topic><topic>Artificial intelligence</topic><topic>Disjunctive logic programming</topic><topic>Head-cycle-free programs</topic><topic>Nonmonotonic reasoning</topic><topic>Stable model checking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Christoph</creatorcontrib><creatorcontrib>Leone, Nicola</creatorcontrib><creatorcontrib>Pfeifer, Gerald</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Christoph</au><au>Leone, Nicola</au><au>Pfeifer, Gerald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing disjunctive logic programming systems by SAT checkers</atitle><jtitle>Artificial intelligence</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>151</volume><issue>1</issue><spage>177</spage><epage>212</epage><pages>177-212</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>Disjunctive logic programming (DLP) with stable model semantics is a powerful nonmonotonic formalism for knowledge representation and reasoning. Reasoning with DLP is harder than with normal (∨-free) logic programs, because
stable model checking—deciding whether a given model is a stable model of a propositional DLP program—is co-NP-complete, while it is polynomial for normal logic programs.
This paper proposes a new transformation
Γ
M(
P)
, which reduces stable model checking to UNSAT—i.e., to deciding whether a given CNF formula is unsatisfiable. The stability of a model
M of a program
P
thus can be verified by calling a Satisfiability Checker on the CNF formula
Γ
M(
P)
. The transformation is parsimonious (i.e., no new symbol is added), and efficiently computable, as it runs in logarithmic space (and therefore in polynomial time). Moreover, the size of the generated CNF formula never exceeds the size of the input (and is usually much smaller). We complement this transformation with modular evaluation results, which allow for efficient handling of large real-world reasoning problems.
The proposed approach to stable model checking has been implemented in
DLV—a state-of-the-art implementation of DLP. A number of experiments and benchmarks have been run using SATZ as Satisfiability checker. The results of the experiments are very positive and confirm the usefulness of our techniques.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0004-3702(03)00078-X</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-3702 |
ispartof | Artificial intelligence, 2003-12, Vol.151 (1), p.177-212 |
issn | 0004-3702 1872-7921 |
language | eng |
recordid | cdi_proquest_miscellaneous_57560457 |
source | Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library |
subjects | Answer set programs Artificial intelligence Disjunctive logic programming Head-cycle-free programs Nonmonotonic reasoning Stable model checking |
title | Enhancing disjunctive logic programming systems by SAT checkers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20disjunctive%20logic%20programming%20systems%20by%20SAT%20checkers&rft.jtitle=Artificial%20intelligence&rft.au=Koch,%20Christoph&rft.date=2003-12-01&rft.volume=151&rft.issue=1&rft.spage=177&rft.epage=212&rft.pages=177-212&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/S0004-3702(03)00078-X&rft_dat=%3Cproquest_cross%3E57560457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27884575&rft_id=info:pmid/&rft_els_id=S000437020300078X&rfr_iscdi=true |