Enhancing disjunctive logic programming systems by SAT checkers

Disjunctive logic programming (DLP) with stable model semantics is a powerful nonmonotonic formalism for knowledge representation and reasoning. Reasoning with DLP is harder than with normal (∨-free) logic programs, because stable model checking—deciding whether a given model is a stable model of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2003-12, Vol.151 (1), p.177-212
Hauptverfasser: Koch, Christoph, Leone, Nicola, Pfeifer, Gerald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 1
container_start_page 177
container_title Artificial intelligence
container_volume 151
creator Koch, Christoph
Leone, Nicola
Pfeifer, Gerald
description Disjunctive logic programming (DLP) with stable model semantics is a powerful nonmonotonic formalism for knowledge representation and reasoning. Reasoning with DLP is harder than with normal (∨-free) logic programs, because stable model checking—deciding whether a given model is a stable model of a propositional DLP program—is co-NP-complete, while it is polynomial for normal logic programs. This paper proposes a new transformation Γ M( P) , which reduces stable model checking to UNSAT—i.e., to deciding whether a given CNF formula is unsatisfiable. The stability of a model M of a program P thus can be verified by calling a Satisfiability Checker on the CNF formula Γ M( P) . The transformation is parsimonious (i.e., no new symbol is added), and efficiently computable, as it runs in logarithmic space (and therefore in polynomial time). Moreover, the size of the generated CNF formula never exceeds the size of the input (and is usually much smaller). We complement this transformation with modular evaluation results, which allow for efficient handling of large real-world reasoning problems. The proposed approach to stable model checking has been implemented in DLV—a state-of-the-art implementation of DLP. A number of experiments and benchmarks have been run using SATZ as Satisfiability checker. The results of the experiments are very positive and confirm the usefulness of our techniques.
doi_str_mv 10.1016/S0004-3702(03)00078-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57560457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000437020300078X</els_id><sourcerecordid>57560457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-f04f9a80287e629e43cfb1a41ef400fdbc9bdb368c6b31c36e6d4fb56a486a0f3</originalsourceid><addsrcrecordid>eNqFkE9rAjEQxUNpodb2IxT2VNrDtskmm2RPImL_gNCDFryFbHaise6uTVbBb9-opVdPw2N-7zHzELon-Jlgwl-mGGOWUoGzR0yfohAynV-gHpEiS0WRkUvU-0eu0U0IqyhpUZAeGoybpW6MaxZJ5cJq25jO7SBZtwtnko1vF17X9WEb9qGDOiTlPpkOZ4lZgvkGH27RldXrAHd_s4--Xsez0Xs6-Xz7GA0nqaG86FKLmS20xJkUwLMCGDW2JJoRsAxjW5WmKKuScml4SUn0AK-YLXOumeQaW9pHD6fceNPPFkKnahcMrNe6gXYbVC5yjlkuzoKZkDJyeQTzE2h8G4IHqzbe1drvFcHq0Ks69qoOpSlM1bFXNY--wckH8d2dA6-CcdAYqJwH06mqdWcSfgEZwoAG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27884575</pqid></control><display><type>article</type><title>Enhancing disjunctive logic programming systems by SAT checkers</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Koch, Christoph ; Leone, Nicola ; Pfeifer, Gerald</creator><creatorcontrib>Koch, Christoph ; Leone, Nicola ; Pfeifer, Gerald</creatorcontrib><description>Disjunctive logic programming (DLP) with stable model semantics is a powerful nonmonotonic formalism for knowledge representation and reasoning. Reasoning with DLP is harder than with normal (∨-free) logic programs, because stable model checking—deciding whether a given model is a stable model of a propositional DLP program—is co-NP-complete, while it is polynomial for normal logic programs. This paper proposes a new transformation Γ M( P) , which reduces stable model checking to UNSAT—i.e., to deciding whether a given CNF formula is unsatisfiable. The stability of a model M of a program P thus can be verified by calling a Satisfiability Checker on the CNF formula Γ M( P) . The transformation is parsimonious (i.e., no new symbol is added), and efficiently computable, as it runs in logarithmic space (and therefore in polynomial time). Moreover, the size of the generated CNF formula never exceeds the size of the input (and is usually much smaller). We complement this transformation with modular evaluation results, which allow for efficient handling of large real-world reasoning problems. The proposed approach to stable model checking has been implemented in DLV—a state-of-the-art implementation of DLP. A number of experiments and benchmarks have been run using SATZ as Satisfiability checker. The results of the experiments are very positive and confirm the usefulness of our techniques.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/S0004-3702(03)00078-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Answer set programs ; Artificial intelligence ; Disjunctive logic programming ; Head-cycle-free programs ; Nonmonotonic reasoning ; Stable model checking</subject><ispartof>Artificial intelligence, 2003-12, Vol.151 (1), p.177-212</ispartof><rights>2003 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-f04f9a80287e629e43cfb1a41ef400fdbc9bdb368c6b31c36e6d4fb56a486a0f3</citedby><cites>FETCH-LOGICAL-c369t-f04f9a80287e629e43cfb1a41ef400fdbc9bdb368c6b31c36e6d4fb56a486a0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0004-3702(03)00078-X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Koch, Christoph</creatorcontrib><creatorcontrib>Leone, Nicola</creatorcontrib><creatorcontrib>Pfeifer, Gerald</creatorcontrib><title>Enhancing disjunctive logic programming systems by SAT checkers</title><title>Artificial intelligence</title><description>Disjunctive logic programming (DLP) with stable model semantics is a powerful nonmonotonic formalism for knowledge representation and reasoning. Reasoning with DLP is harder than with normal (∨-free) logic programs, because stable model checking—deciding whether a given model is a stable model of a propositional DLP program—is co-NP-complete, while it is polynomial for normal logic programs. This paper proposes a new transformation Γ M( P) , which reduces stable model checking to UNSAT—i.e., to deciding whether a given CNF formula is unsatisfiable. The stability of a model M of a program P thus can be verified by calling a Satisfiability Checker on the CNF formula Γ M( P) . The transformation is parsimonious (i.e., no new symbol is added), and efficiently computable, as it runs in logarithmic space (and therefore in polynomial time). Moreover, the size of the generated CNF formula never exceeds the size of the input (and is usually much smaller). We complement this transformation with modular evaluation results, which allow for efficient handling of large real-world reasoning problems. The proposed approach to stable model checking has been implemented in DLV—a state-of-the-art implementation of DLP. A number of experiments and benchmarks have been run using SATZ as Satisfiability checker. The results of the experiments are very positive and confirm the usefulness of our techniques.</description><subject>Answer set programs</subject><subject>Artificial intelligence</subject><subject>Disjunctive logic programming</subject><subject>Head-cycle-free programs</subject><subject>Nonmonotonic reasoning</subject><subject>Stable model checking</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rAjEQxUNpodb2IxT2VNrDtskmm2RPImL_gNCDFryFbHaise6uTVbBb9-opVdPw2N-7zHzELon-Jlgwl-mGGOWUoGzR0yfohAynV-gHpEiS0WRkUvU-0eu0U0IqyhpUZAeGoybpW6MaxZJ5cJq25jO7SBZtwtnko1vF17X9WEb9qGDOiTlPpkOZ4lZgvkGH27RldXrAHd_s4--Xsez0Xs6-Xz7GA0nqaG86FKLmS20xJkUwLMCGDW2JJoRsAxjW5WmKKuScml4SUn0AK-YLXOumeQaW9pHD6fceNPPFkKnahcMrNe6gXYbVC5yjlkuzoKZkDJyeQTzE2h8G4IHqzbe1drvFcHq0Ks69qoOpSlM1bFXNY--wckH8d2dA6-CcdAYqJwH06mqdWcSfgEZwoAG</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Koch, Christoph</creator><creator>Leone, Nicola</creator><creator>Pfeifer, Gerald</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20031201</creationdate><title>Enhancing disjunctive logic programming systems by SAT checkers</title><author>Koch, Christoph ; Leone, Nicola ; Pfeifer, Gerald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-f04f9a80287e629e43cfb1a41ef400fdbc9bdb368c6b31c36e6d4fb56a486a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Answer set programs</topic><topic>Artificial intelligence</topic><topic>Disjunctive logic programming</topic><topic>Head-cycle-free programs</topic><topic>Nonmonotonic reasoning</topic><topic>Stable model checking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Christoph</creatorcontrib><creatorcontrib>Leone, Nicola</creatorcontrib><creatorcontrib>Pfeifer, Gerald</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Christoph</au><au>Leone, Nicola</au><au>Pfeifer, Gerald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing disjunctive logic programming systems by SAT checkers</atitle><jtitle>Artificial intelligence</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>151</volume><issue>1</issue><spage>177</spage><epage>212</epage><pages>177-212</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>Disjunctive logic programming (DLP) with stable model semantics is a powerful nonmonotonic formalism for knowledge representation and reasoning. Reasoning with DLP is harder than with normal (∨-free) logic programs, because stable model checking—deciding whether a given model is a stable model of a propositional DLP program—is co-NP-complete, while it is polynomial for normal logic programs. This paper proposes a new transformation Γ M( P) , which reduces stable model checking to UNSAT—i.e., to deciding whether a given CNF formula is unsatisfiable. The stability of a model M of a program P thus can be verified by calling a Satisfiability Checker on the CNF formula Γ M( P) . The transformation is parsimonious (i.e., no new symbol is added), and efficiently computable, as it runs in logarithmic space (and therefore in polynomial time). Moreover, the size of the generated CNF formula never exceeds the size of the input (and is usually much smaller). We complement this transformation with modular evaluation results, which allow for efficient handling of large real-world reasoning problems. The proposed approach to stable model checking has been implemented in DLV—a state-of-the-art implementation of DLP. A number of experiments and benchmarks have been run using SATZ as Satisfiability checker. The results of the experiments are very positive and confirm the usefulness of our techniques.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0004-3702(03)00078-X</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 2003-12, Vol.151 (1), p.177-212
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_miscellaneous_57560457
source Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library
subjects Answer set programs
Artificial intelligence
Disjunctive logic programming
Head-cycle-free programs
Nonmonotonic reasoning
Stable model checking
title Enhancing disjunctive logic programming systems by SAT checkers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20disjunctive%20logic%20programming%20systems%20by%20SAT%20checkers&rft.jtitle=Artificial%20intelligence&rft.au=Koch,%20Christoph&rft.date=2003-12-01&rft.volume=151&rft.issue=1&rft.spage=177&rft.epage=212&rft.pages=177-212&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/S0004-3702(03)00078-X&rft_dat=%3Cproquest_cross%3E57560457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27884575&rft_id=info:pmid/&rft_els_id=S000437020300078X&rfr_iscdi=true