A data mining approach to the prediction of corporate failure

This paper uses a data mining approach to the prediction of corporate failure. Initially, we use four single classifiers — discriminant analysis, logistic regression, neural networks and C5.0 — each based on two feature selection methods for predicting corporate failure. Of the two feature selection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2001-06, Vol.14 (3), p.189-195
Hauptverfasser: Lin, Feng Yu, McClean, Sally
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 3
container_start_page 189
container_title Knowledge-based systems
container_volume 14
creator Lin, Feng Yu
McClean, Sally
description This paper uses a data mining approach to the prediction of corporate failure. Initially, we use four single classifiers — discriminant analysis, logistic regression, neural networks and C5.0 — each based on two feature selection methods for predicting corporate failure. Of the two feature selection methods — human judgement based on financial theory and ANOVA statistical method — we found the ANOVA method performs better than the human judgement method in all classifiers except discriminant analysis. Among the individual classifiers, decision trees and neural networks were found to provide better results. Finally, a hybrid method that combines the best features of several classification models is developed to increase the prediction performance. The empirical tests show that such a hybrid method produces higher prediction accuracy than individual classifiers.
doi_str_mv 10.1016/S0950-7051(01)00096-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57550965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095070510100096X</els_id><sourcerecordid>57550965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-f8c6902785d64573080955d25b5328a9fa2458438d7c2bf109ee0d6f379961a53</originalsourceid><addsrcrecordid>eNqFkE9LAzEUxIMoWKsfQchJ9LD6kt1sNgeRUvwHBQ8q9BbSbGIj282apILf3qwVr8KDd5kZZn4InRK4JEDqq2cQDAoOjJwDuQAAURfLPTQhDacFr0Dso8mf5BAdxfieRZSSZoKuZ7hVSeGN613_htUwBK_0GieP09rgIZjW6eR8j73F2ofBB5UMtsp122CO0YFVXTQnv3-KXu9uX-YPxeLp_nE-WxS6gioVttG1AMob1tYV4yU0uQ5rKVuxkjZKWEUr1lRl03JNV5aAMAba2pZciJooVk7R2S43t_vYmpjkxkVtuk71xm-jZJyxvHoUsp1QBx9jMFYOwW1U-JIE5AhL_sCSIwkJ-UZYcpl9NzufySs-nQkyamd6ndcHo5Nsvfsn4Rvnw2-V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>57550965</pqid></control><display><type>article</type><title>A data mining approach to the prediction of corporate failure</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lin, Feng Yu ; McClean, Sally</creator><creatorcontrib>Lin, Feng Yu ; McClean, Sally</creatorcontrib><description>This paper uses a data mining approach to the prediction of corporate failure. Initially, we use four single classifiers — discriminant analysis, logistic regression, neural networks and C5.0 — each based on two feature selection methods for predicting corporate failure. Of the two feature selection methods — human judgement based on financial theory and ANOVA statistical method — we found the ANOVA method performs better than the human judgement method in all classifiers except discriminant analysis. Among the individual classifiers, decision trees and neural networks were found to provide better results. Finally, a hybrid method that combines the best features of several classification models is developed to increase the prediction performance. The empirical tests show that such a hybrid method produces higher prediction accuracy than individual classifiers.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/S0950-7051(01)00096-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial intelligence ; Companies ; Corporate failure ; Data mining ; Hybrid method ; Hybrid systems ; Performance measures ; Predictions</subject><ispartof>Knowledge-based systems, 2001-06, Vol.14 (3), p.189-195</ispartof><rights>2001 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-f8c6902785d64573080955d25b5328a9fa2458438d7c2bf109ee0d6f379961a53</citedby><cites>FETCH-LOGICAL-c404t-f8c6902785d64573080955d25b5328a9fa2458438d7c2bf109ee0d6f379961a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0950-7051(01)00096-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lin, Feng Yu</creatorcontrib><creatorcontrib>McClean, Sally</creatorcontrib><title>A data mining approach to the prediction of corporate failure</title><title>Knowledge-based systems</title><description>This paper uses a data mining approach to the prediction of corporate failure. Initially, we use four single classifiers — discriminant analysis, logistic regression, neural networks and C5.0 — each based on two feature selection methods for predicting corporate failure. Of the two feature selection methods — human judgement based on financial theory and ANOVA statistical method — we found the ANOVA method performs better than the human judgement method in all classifiers except discriminant analysis. Among the individual classifiers, decision trees and neural networks were found to provide better results. Finally, a hybrid method that combines the best features of several classification models is developed to increase the prediction performance. The empirical tests show that such a hybrid method produces higher prediction accuracy than individual classifiers.</description><subject>Artificial intelligence</subject><subject>Companies</subject><subject>Corporate failure</subject><subject>Data mining</subject><subject>Hybrid method</subject><subject>Hybrid systems</subject><subject>Performance measures</subject><subject>Predictions</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEUxIMoWKsfQchJ9LD6kt1sNgeRUvwHBQ8q9BbSbGIj282apILf3qwVr8KDd5kZZn4InRK4JEDqq2cQDAoOjJwDuQAAURfLPTQhDacFr0Dso8mf5BAdxfieRZSSZoKuZ7hVSeGN613_htUwBK_0GieP09rgIZjW6eR8j73F2ofBB5UMtsp122CO0YFVXTQnv3-KXu9uX-YPxeLp_nE-WxS6gioVttG1AMob1tYV4yU0uQ5rKVuxkjZKWEUr1lRl03JNV5aAMAba2pZciJooVk7R2S43t_vYmpjkxkVtuk71xm-jZJyxvHoUsp1QBx9jMFYOwW1U-JIE5AhL_sCSIwkJ-UZYcpl9NzufySs-nQkyamd6ndcHo5Nsvfsn4Rvnw2-V</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Lin, Feng Yu</creator><creator>McClean, Sally</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20010601</creationdate><title>A data mining approach to the prediction of corporate failure</title><author>Lin, Feng Yu ; McClean, Sally</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-f8c6902785d64573080955d25b5328a9fa2458438d7c2bf109ee0d6f379961a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Artificial intelligence</topic><topic>Companies</topic><topic>Corporate failure</topic><topic>Data mining</topic><topic>Hybrid method</topic><topic>Hybrid systems</topic><topic>Performance measures</topic><topic>Predictions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Feng Yu</creatorcontrib><creatorcontrib>McClean, Sally</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Feng Yu</au><au>McClean, Sally</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data mining approach to the prediction of corporate failure</atitle><jtitle>Knowledge-based systems</jtitle><date>2001-06-01</date><risdate>2001</risdate><volume>14</volume><issue>3</issue><spage>189</spage><epage>195</epage><pages>189-195</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>This paper uses a data mining approach to the prediction of corporate failure. Initially, we use four single classifiers — discriminant analysis, logistic regression, neural networks and C5.0 — each based on two feature selection methods for predicting corporate failure. Of the two feature selection methods — human judgement based on financial theory and ANOVA statistical method — we found the ANOVA method performs better than the human judgement method in all classifiers except discriminant analysis. Among the individual classifiers, decision trees and neural networks were found to provide better results. Finally, a hybrid method that combines the best features of several classification models is developed to increase the prediction performance. The empirical tests show that such a hybrid method produces higher prediction accuracy than individual classifiers.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0950-7051(01)00096-X</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2001-06, Vol.14 (3), p.189-195
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_miscellaneous_57550965
source ScienceDirect Journals (5 years ago - present)
subjects Artificial intelligence
Companies
Corporate failure
Data mining
Hybrid method
Hybrid systems
Performance measures
Predictions
title A data mining approach to the prediction of corporate failure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%20mining%20approach%20to%20the%20prediction%20of%20corporate%20failure&rft.jtitle=Knowledge-based%20systems&rft.au=Lin,%20Feng%20Yu&rft.date=2001-06-01&rft.volume=14&rft.issue=3&rft.spage=189&rft.epage=195&rft.pages=189-195&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/S0950-7051(01)00096-X&rft_dat=%3Cproquest_cross%3E57550965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=57550965&rft_id=info:pmid/&rft_els_id=S095070510100096X&rfr_iscdi=true