A data mining approach to the prediction of corporate failure
This paper uses a data mining approach to the prediction of corporate failure. Initially, we use four single classifiers — discriminant analysis, logistic regression, neural networks and C5.0 — each based on two feature selection methods for predicting corporate failure. Of the two feature selection...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2001-06, Vol.14 (3), p.189-195 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | 3 |
container_start_page | 189 |
container_title | Knowledge-based systems |
container_volume | 14 |
creator | Lin, Feng Yu McClean, Sally |
description | This paper uses a data mining approach to the prediction of corporate failure. Initially, we use four single classifiers — discriminant analysis, logistic regression, neural networks and C5.0 — each based on two feature selection methods for predicting corporate failure. Of the two feature selection methods — human judgement based on financial theory and ANOVA statistical method — we found the ANOVA method performs better than the human judgement method in all classifiers except discriminant analysis. Among the individual classifiers, decision trees and neural networks were found to provide better results. Finally, a hybrid method that combines the best features of several classification models is developed to increase the prediction performance. The empirical tests show that such a hybrid method produces higher prediction accuracy than individual classifiers. |
doi_str_mv | 10.1016/S0950-7051(01)00096-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57550965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095070510100096X</els_id><sourcerecordid>57550965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-f8c6902785d64573080955d25b5328a9fa2458438d7c2bf109ee0d6f379961a53</originalsourceid><addsrcrecordid>eNqFkE9LAzEUxIMoWKsfQchJ9LD6kt1sNgeRUvwHBQ8q9BbSbGIj282apILf3qwVr8KDd5kZZn4InRK4JEDqq2cQDAoOjJwDuQAAURfLPTQhDacFr0Dso8mf5BAdxfieRZSSZoKuZ7hVSeGN613_htUwBK_0GieP09rgIZjW6eR8j73F2ofBB5UMtsp122CO0YFVXTQnv3-KXu9uX-YPxeLp_nE-WxS6gioVttG1AMob1tYV4yU0uQ5rKVuxkjZKWEUr1lRl03JNV5aAMAba2pZciJooVk7R2S43t_vYmpjkxkVtuk71xm-jZJyxvHoUsp1QBx9jMFYOwW1U-JIE5AhL_sCSIwkJ-UZYcpl9NzufySs-nQkyamd6ndcHo5Nsvfsn4Rvnw2-V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>57550965</pqid></control><display><type>article</type><title>A data mining approach to the prediction of corporate failure</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lin, Feng Yu ; McClean, Sally</creator><creatorcontrib>Lin, Feng Yu ; McClean, Sally</creatorcontrib><description>This paper uses a data mining approach to the prediction of corporate failure. Initially, we use four single classifiers — discriminant analysis, logistic regression, neural networks and C5.0 — each based on two feature selection methods for predicting corporate failure. Of the two feature selection methods — human judgement based on financial theory and ANOVA statistical method — we found the ANOVA method performs better than the human judgement method in all classifiers except discriminant analysis. Among the individual classifiers, decision trees and neural networks were found to provide better results. Finally, a hybrid method that combines the best features of several classification models is developed to increase the prediction performance. The empirical tests show that such a hybrid method produces higher prediction accuracy than individual classifiers.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/S0950-7051(01)00096-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial intelligence ; Companies ; Corporate failure ; Data mining ; Hybrid method ; Hybrid systems ; Performance measures ; Predictions</subject><ispartof>Knowledge-based systems, 2001-06, Vol.14 (3), p.189-195</ispartof><rights>2001 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-f8c6902785d64573080955d25b5328a9fa2458438d7c2bf109ee0d6f379961a53</citedby><cites>FETCH-LOGICAL-c404t-f8c6902785d64573080955d25b5328a9fa2458438d7c2bf109ee0d6f379961a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0950-7051(01)00096-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lin, Feng Yu</creatorcontrib><creatorcontrib>McClean, Sally</creatorcontrib><title>A data mining approach to the prediction of corporate failure</title><title>Knowledge-based systems</title><description>This paper uses a data mining approach to the prediction of corporate failure. Initially, we use four single classifiers — discriminant analysis, logistic regression, neural networks and C5.0 — each based on two feature selection methods for predicting corporate failure. Of the two feature selection methods — human judgement based on financial theory and ANOVA statistical method — we found the ANOVA method performs better than the human judgement method in all classifiers except discriminant analysis. Among the individual classifiers, decision trees and neural networks were found to provide better results. Finally, a hybrid method that combines the best features of several classification models is developed to increase the prediction performance. The empirical tests show that such a hybrid method produces higher prediction accuracy than individual classifiers.</description><subject>Artificial intelligence</subject><subject>Companies</subject><subject>Corporate failure</subject><subject>Data mining</subject><subject>Hybrid method</subject><subject>Hybrid systems</subject><subject>Performance measures</subject><subject>Predictions</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEUxIMoWKsfQchJ9LD6kt1sNgeRUvwHBQ8q9BbSbGIj282apILf3qwVr8KDd5kZZn4InRK4JEDqq2cQDAoOjJwDuQAAURfLPTQhDacFr0Dso8mf5BAdxfieRZSSZoKuZ7hVSeGN613_htUwBK_0GieP09rgIZjW6eR8j73F2ofBB5UMtsp122CO0YFVXTQnv3-KXu9uX-YPxeLp_nE-WxS6gioVttG1AMob1tYV4yU0uQ5rKVuxkjZKWEUr1lRl03JNV5aAMAba2pZciJooVk7R2S43t_vYmpjkxkVtuk71xm-jZJyxvHoUsp1QBx9jMFYOwW1U-JIE5AhL_sCSIwkJ-UZYcpl9NzufySs-nQkyamd6ndcHo5Nsvfsn4Rvnw2-V</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Lin, Feng Yu</creator><creator>McClean, Sally</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20010601</creationdate><title>A data mining approach to the prediction of corporate failure</title><author>Lin, Feng Yu ; McClean, Sally</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-f8c6902785d64573080955d25b5328a9fa2458438d7c2bf109ee0d6f379961a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Artificial intelligence</topic><topic>Companies</topic><topic>Corporate failure</topic><topic>Data mining</topic><topic>Hybrid method</topic><topic>Hybrid systems</topic><topic>Performance measures</topic><topic>Predictions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Feng Yu</creatorcontrib><creatorcontrib>McClean, Sally</creatorcontrib><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Feng Yu</au><au>McClean, Sally</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data mining approach to the prediction of corporate failure</atitle><jtitle>Knowledge-based systems</jtitle><date>2001-06-01</date><risdate>2001</risdate><volume>14</volume><issue>3</issue><spage>189</spage><epage>195</epage><pages>189-195</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>This paper uses a data mining approach to the prediction of corporate failure. Initially, we use four single classifiers — discriminant analysis, logistic regression, neural networks and C5.0 — each based on two feature selection methods for predicting corporate failure. Of the two feature selection methods — human judgement based on financial theory and ANOVA statistical method — we found the ANOVA method performs better than the human judgement method in all classifiers except discriminant analysis. Among the individual classifiers, decision trees and neural networks were found to provide better results. Finally, a hybrid method that combines the best features of several classification models is developed to increase the prediction performance. The empirical tests show that such a hybrid method produces higher prediction accuracy than individual classifiers.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0950-7051(01)00096-X</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2001-06, Vol.14 (3), p.189-195 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_miscellaneous_57550965 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Artificial intelligence Companies Corporate failure Data mining Hybrid method Hybrid systems Performance measures Predictions |
title | A data mining approach to the prediction of corporate failure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%20mining%20approach%20to%20the%20prediction%20of%20corporate%20failure&rft.jtitle=Knowledge-based%20systems&rft.au=Lin,%20Feng%20Yu&rft.date=2001-06-01&rft.volume=14&rft.issue=3&rft.spage=189&rft.epage=195&rft.pages=189-195&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/S0950-7051(01)00096-X&rft_dat=%3Cproquest_cross%3E57550965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=57550965&rft_id=info:pmid/&rft_els_id=S095070510100096X&rfr_iscdi=true |