Combining Neural Networks and Context‐Driven Search for Online, Printed Handwriting Recognition in the Newton

While online handwriting recognition is an area of long‐standing and ongoing research, the recent emergence of portable, pen‐based computers has focused urgent attention on usable, practical solutions. We discuss a combination and improvement of classical methods to produce robust recognition of han...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The AI magazine 1998-03, Vol.19 (1), p.73-89
Hauptverfasser: Yaeger, Larry S., Webb, Brandyn J., Lyon, Richard F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue 1
container_start_page 73
container_title The AI magazine
container_volume 19
creator Yaeger, Larry S.
Webb, Brandyn J.
Lyon, Richard F.
description While online handwriting recognition is an area of long‐standing and ongoing research, the recent emergence of portable, pen‐based computers has focused urgent attention on usable, practical solutions. We discuss a combination and improvement of classical methods to produce robust recognition of hand‐printed English text for a recognizer shipping in new models of Apple Computer's newton messagepad and emate. Combining an artificial neural network (ANN) as a character classifier with a context‐driven search over segmentation and word‐recognition hypotheses provides an effective recognition system. Long‐standing issues relative to training, generalization, segmentation, models of context, probabilistic formalisms, and so on, need to be resolved, however, to achieve excellent performance. We present a number of recent innovations in the application of ANNs as character classifiers for word recognition, including integrated multiple representations, normalized output error, negative training, stroke warping, frequency balancing, error emphasis, and quantized weights. User adaptation and extension to cursive recognition pose continuing challenges.
doi_str_mv 10.1609/aimag.v19i1.1355
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_57503799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A20452453</galeid><sourcerecordid>A20452453</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3274-b0db2304ecb47ae7797956a031c78cec5e83b17158283471ed1df70791af18053</originalsourceid><addsrcrecordid>eNpdkc9u1DAQhyMEEkvhztFCiFOzeOw4do5LoLRSxSL-nC3HmaQuXrt1sl164xH6jH0SvN2KA6cZab75aTRfUbwGuoSaNu-N25hxeQONgyVwIZ4UC8YllE3N4GmxoJKrsqope168mKZLSmmteL0oYhs3nQsujOQLbpPxucy7mH5NxISetDHM-Hu-_3P3MbkbDOQ7mmQvyBATWQfvAh6Tr8llqCeneWGX3LzP-oY2jiH3MRAXyHyBOXc3x_CyeDYYP-Grx3pU_Dz59KM9Lc_Xn8_a1Xk5ciarsqN9xzit0HaVNChlIxtRG8rBSmXRClS8AwlCMcUrCdhDP0gqGzADKCr4UfHukHuV4vUWp1lv3GTRexMwbictpKBcNk0G3_wHXsZtCvk2zaiCiilQGTo-QKPxqF2wh7fY6D2OqPPl7VqvGK0EqwTP-NvHTDNZ44dkgnWTvkrZUbrVjAFwVmesOWA75_H23xio3hvVD0b1g1G9N6pXq9XZhxMKsqr4X9C9l_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208142818</pqid></control><display><type>article</type><title>Combining Neural Networks and Context‐Driven Search for Online, Printed Handwriting Recognition in the Newton</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yaeger, Larry S. ; Webb, Brandyn J. ; Lyon, Richard F.</creator><creatorcontrib>Yaeger, Larry S. ; Webb, Brandyn J. ; Lyon, Richard F.</creatorcontrib><description>While online handwriting recognition is an area of long‐standing and ongoing research, the recent emergence of portable, pen‐based computers has focused urgent attention on usable, practical solutions. We discuss a combination and improvement of classical methods to produce robust recognition of hand‐printed English text for a recognizer shipping in new models of Apple Computer's newton messagepad and emate. Combining an artificial neural network (ANN) as a character classifier with a context‐driven search over segmentation and word‐recognition hypotheses provides an effective recognition system. Long‐standing issues relative to training, generalization, segmentation, models of context, probabilistic formalisms, and so on, need to be resolved, however, to achieve excellent performance. We present a number of recent innovations in the application of ANNs as character classifiers for word recognition, including integrated multiple representations, normalized output error, negative training, stroke warping, frequency balancing, error emphasis, and quantized weights. User adaptation and extension to cursive recognition pose continuing challenges.</description><identifier>ISSN: 0738-4602</identifier><identifier>EISSN: 2371-9621</identifier><identifier>DOI: 10.1609/aimag.v19i1.1355</identifier><language>eng</language><publisher>Menlo Park, CA: American Association for Artificial Intelligence</publisher><subject>Accuracy ; Analysis ; Applied sciences ; Artificial intelligence ; Artificial neural networks ; Classification ; Computer science; control theory; systems ; Connectionism. Neural networks ; Dictionaries ; Exact sciences and technology ; Handwriting ; Handwriting recognition ; Hypotheses ; Learning and adaptive systems ; Neural networks ; Pattern recognition. Digital image processing. Computational geometry ; Writing</subject><ispartof>The AI magazine, 1998-03, Vol.19 (1), p.73-89</ispartof><rights>1998 The Authors. AI Magazine published by John Wiley &amp; Sons Ltd on behalf of Association for the Advancement of Artificial Intelligence</rights><rights>1998 INIST-CNRS</rights><rights>COPYRIGHT 1998 American Association for Artificial Intelligence</rights><rights>Copyright American Association for Artificial Intelligence Spring 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2211326$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yaeger, Larry S.</creatorcontrib><creatorcontrib>Webb, Brandyn J.</creatorcontrib><creatorcontrib>Lyon, Richard F.</creatorcontrib><title>Combining Neural Networks and Context‐Driven Search for Online, Printed Handwriting Recognition in the Newton</title><title>The AI magazine</title><addtitle>AI Magazine</addtitle><description>While online handwriting recognition is an area of long‐standing and ongoing research, the recent emergence of portable, pen‐based computers has focused urgent attention on usable, practical solutions. We discuss a combination and improvement of classical methods to produce robust recognition of hand‐printed English text for a recognizer shipping in new models of Apple Computer's newton messagepad and emate. Combining an artificial neural network (ANN) as a character classifier with a context‐driven search over segmentation and word‐recognition hypotheses provides an effective recognition system. Long‐standing issues relative to training, generalization, segmentation, models of context, probabilistic formalisms, and so on, need to be resolved, however, to achieve excellent performance. We present a number of recent innovations in the application of ANNs as character classifiers for word recognition, including integrated multiple representations, normalized output error, negative training, stroke warping, frequency balancing, error emphasis, and quantized weights. User adaptation and extension to cursive recognition pose continuing challenges.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Dictionaries</subject><subject>Exact sciences and technology</subject><subject>Handwriting</subject><subject>Handwriting recognition</subject><subject>Hypotheses</subject><subject>Learning and adaptive systems</subject><subject>Neural networks</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Writing</subject><issn>0738-4602</issn><issn>2371-9621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc9u1DAQhyMEEkvhztFCiFOzeOw4do5LoLRSxSL-nC3HmaQuXrt1sl164xH6jH0SvN2KA6cZab75aTRfUbwGuoSaNu-N25hxeQONgyVwIZ4UC8YllE3N4GmxoJKrsqope168mKZLSmmteL0oYhs3nQsujOQLbpPxucy7mH5NxISetDHM-Hu-_3P3MbkbDOQ7mmQvyBATWQfvAh6Tr8llqCeneWGX3LzP-oY2jiH3MRAXyHyBOXc3x_CyeDYYP-Grx3pU_Dz59KM9Lc_Xn8_a1Xk5ciarsqN9xzit0HaVNChlIxtRG8rBSmXRClS8AwlCMcUrCdhDP0gqGzADKCr4UfHukHuV4vUWp1lv3GTRexMwbictpKBcNk0G3_wHXsZtCvk2zaiCiilQGTo-QKPxqF2wh7fY6D2OqPPl7VqvGK0EqwTP-NvHTDNZ44dkgnWTvkrZUbrVjAFwVmesOWA75_H23xio3hvVD0b1g1G9N6pXq9XZhxMKsqr4X9C9l_w</recordid><startdate>199803</startdate><enddate>199803</enddate><creator>Yaeger, Larry S.</creator><creator>Webb, Brandyn J.</creator><creator>Lyon, Richard F.</creator><general>American Association for Artificial Intelligence</general><general>John Wiley &amp; Sons, Inc</general><scope>IQODW</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>199803</creationdate><title>Combining Neural Networks and Context‐Driven Search for Online, Printed Handwriting Recognition in the Newton</title><author>Yaeger, Larry S. ; Webb, Brandyn J. ; Lyon, Richard F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3274-b0db2304ecb47ae7797956a031c78cec5e83b17158283471ed1df70791af18053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Dictionaries</topic><topic>Exact sciences and technology</topic><topic>Handwriting</topic><topic>Handwriting recognition</topic><topic>Hypotheses</topic><topic>Learning and adaptive systems</topic><topic>Neural networks</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaeger, Larry S.</creatorcontrib><creatorcontrib>Webb, Brandyn J.</creatorcontrib><creatorcontrib>Lyon, Richard F.</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The AI magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaeger, Larry S.</au><au>Webb, Brandyn J.</au><au>Lyon, Richard F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Neural Networks and Context‐Driven Search for Online, Printed Handwriting Recognition in the Newton</atitle><jtitle>The AI magazine</jtitle><addtitle>AI Magazine</addtitle><date>1998-03</date><risdate>1998</risdate><volume>19</volume><issue>1</issue><spage>73</spage><epage>89</epage><pages>73-89</pages><issn>0738-4602</issn><eissn>2371-9621</eissn><abstract>While online handwriting recognition is an area of long‐standing and ongoing research, the recent emergence of portable, pen‐based computers has focused urgent attention on usable, practical solutions. We discuss a combination and improvement of classical methods to produce robust recognition of hand‐printed English text for a recognizer shipping in new models of Apple Computer's newton messagepad and emate. Combining an artificial neural network (ANN) as a character classifier with a context‐driven search over segmentation and word‐recognition hypotheses provides an effective recognition system. Long‐standing issues relative to training, generalization, segmentation, models of context, probabilistic formalisms, and so on, need to be resolved, however, to achieve excellent performance. We present a number of recent innovations in the application of ANNs as character classifiers for word recognition, including integrated multiple representations, normalized output error, negative training, stroke warping, frequency balancing, error emphasis, and quantized weights. User adaptation and extension to cursive recognition pose continuing challenges.</abstract><cop>Menlo Park, CA</cop><pub>American Association for Artificial Intelligence</pub><doi>10.1609/aimag.v19i1.1355</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0738-4602
ispartof The AI magazine, 1998-03, Vol.19 (1), p.73-89
issn 0738-4602
2371-9621
language eng
recordid cdi_proquest_miscellaneous_57503799
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Accuracy
Analysis
Applied sciences
Artificial intelligence
Artificial neural networks
Classification
Computer science
control theory
systems
Connectionism. Neural networks
Dictionaries
Exact sciences and technology
Handwriting
Handwriting recognition
Hypotheses
Learning and adaptive systems
Neural networks
Pattern recognition. Digital image processing. Computational geometry
Writing
title Combining Neural Networks and Context‐Driven Search for Online, Printed Handwriting Recognition in the Newton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Neural%20Networks%20and%20Context%E2%80%90Driven%20Search%20for%20Online,%20Printed%20Handwriting%20Recognition%20in%20the%20Newton&rft.jtitle=The%20AI%20magazine&rft.au=Yaeger,%20Larry%20S.&rft.date=1998-03&rft.volume=19&rft.issue=1&rft.spage=73&rft.epage=89&rft.pages=73-89&rft.issn=0738-4602&rft.eissn=2371-9621&rft_id=info:doi/10.1609/aimag.v19i1.1355&rft_dat=%3Cgale_proqu%3EA20452453%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208142818&rft_id=info:pmid/&rft_galeid=A20452453&rfr_iscdi=true