Speeding up problem solving by abstraction: a graph oriented approach
This paper presents a new perspective on the traditional AI task of problem solving and the techniques of abstraction and refinement. The new perspective is based on the well-known, but little exploited, relation between problem solving and the task of finding a path in a graph between two given nod...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence 1996-08, Vol.85 (1), p.321-361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | 1 |
container_start_page | 321 |
container_title | Artificial intelligence |
container_volume | 85 |
creator | Holte, R.C. Mkadmi, T. Zimmer, R.M. MacDonald, A.J. |
description | This paper presents a new perspective on the traditional AI task of problem solving and the techniques of abstraction and refinement. The new perspective is based on the well-known, but little exploited, relation between problem solving and the task of finding a path in a graph between two given nodes. The graph oriented view of abstraction suggests two new families of abstraction techniques, algebraic abstraction and STAR abstraction. The first is shown to be extremely sensitive to the exact manner in which problems are represented. STAR abstraction, by contrast, is very widely applicable and leads to significant speedup in all our experiments. The reformulation of traditional refinement techniques as graph algorithms suggests several enhancements, including an optimal refinement algorithm, and one radically new technique:
alternating search direction. Experiments comparing these techniques on a variety of problems show that
alternating opportunism (AltO) a variant of the new technique, is uniformly superior to all the others. |
doi_str_mv | 10.1016/0004-3702(95)00111-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57400554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0004370295001115</els_id><sourcerecordid>57400554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a9765cebb2081859e42aeb3971916e95c994412765d42c1e80d7d0337c585593</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKv_wENOoofVTD6ajQdBSv2Aggd7D9nstF3Z7q7JttB_b9aKRz0NMzzvDPMQcgnsFhhM7hhjMhOa8WujbhgDgEwdkRHkmmfacDgmo1_klJzF-JFaYQyMyOy9QyyrZkW3He1CW9S4obGtd8Oo2FNXxD4431dtc08dXQXXrWkbKmx6LKnrUsT59Tk5Wbo64sVPHZPF02wxfcnmb8-v08d55iXwPnNGT5THouAsh1wZlNxhIYwGAxM0yhsjE5igUnIPmLNSl0wI7VWulBFjcnVYm65-bjH2dlNFj3XtGmy30SotGVNK_guK3GgjOCRQHkAf2hgDLm0Xqo0LewvMDm7tIM4O4qxR9tutVSn2cIhhenZXYbDRJyU-mQzoe1u21d8LvgBW035y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38979321</pqid></control><display><type>article</type><title>Speeding up problem solving by abstraction: a graph oriented approach</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Holte, R.C. ; Mkadmi, T. ; Zimmer, R.M. ; MacDonald, A.J.</creator><creatorcontrib>Holte, R.C. ; Mkadmi, T. ; Zimmer, R.M. ; MacDonald, A.J.</creatorcontrib><description>This paper presents a new perspective on the traditional AI task of problem solving and the techniques of abstraction and refinement. The new perspective is based on the well-known, but little exploited, relation between problem solving and the task of finding a path in a graph between two given nodes. The graph oriented view of abstraction suggests two new families of abstraction techniques, algebraic abstraction and STAR abstraction. The first is shown to be extremely sensitive to the exact manner in which problems are represented. STAR abstraction, by contrast, is very widely applicable and leads to significant speedup in all our experiments. The reformulation of traditional refinement techniques as graph algorithms suggests several enhancements, including an optimal refinement algorithm, and one radically new technique:
alternating search direction. Experiments comparing these techniques on a variety of problems show that
alternating opportunism (AltO) a variant of the new technique, is uniformly superior to all the others.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/0004-3702(95)00111-5</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Abstraction ; Algorithms ; Artificial intelligence ; Problem solving</subject><ispartof>Artificial intelligence, 1996-08, Vol.85 (1), p.321-361</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-a9765cebb2081859e42aeb3971916e95c994412765d42c1e80d7d0337c585593</citedby><cites>FETCH-LOGICAL-c412t-a9765cebb2081859e42aeb3971916e95c994412765d42c1e80d7d0337c585593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0004-3702(95)00111-5$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Holte, R.C.</creatorcontrib><creatorcontrib>Mkadmi, T.</creatorcontrib><creatorcontrib>Zimmer, R.M.</creatorcontrib><creatorcontrib>MacDonald, A.J.</creatorcontrib><title>Speeding up problem solving by abstraction: a graph oriented approach</title><title>Artificial intelligence</title><description>This paper presents a new perspective on the traditional AI task of problem solving and the techniques of abstraction and refinement. The new perspective is based on the well-known, but little exploited, relation between problem solving and the task of finding a path in a graph between two given nodes. The graph oriented view of abstraction suggests two new families of abstraction techniques, algebraic abstraction and STAR abstraction. The first is shown to be extremely sensitive to the exact manner in which problems are represented. STAR abstraction, by contrast, is very widely applicable and leads to significant speedup in all our experiments. The reformulation of traditional refinement techniques as graph algorithms suggests several enhancements, including an optimal refinement algorithm, and one radically new technique:
alternating search direction. Experiments comparing these techniques on a variety of problems show that
alternating opportunism (AltO) a variant of the new technique, is uniformly superior to all the others.</description><subject>Abstraction</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Problem solving</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKv_wENOoofVTD6ajQdBSv2Aggd7D9nstF3Z7q7JttB_b9aKRz0NMzzvDPMQcgnsFhhM7hhjMhOa8WujbhgDgEwdkRHkmmfacDgmo1_klJzF-JFaYQyMyOy9QyyrZkW3He1CW9S4obGtd8Oo2FNXxD4431dtc08dXQXXrWkbKmx6LKnrUsT59Tk5Wbo64sVPHZPF02wxfcnmb8-v08d55iXwPnNGT5THouAsh1wZlNxhIYwGAxM0yhsjE5igUnIPmLNSl0wI7VWulBFjcnVYm65-bjH2dlNFj3XtGmy30SotGVNK_guK3GgjOCRQHkAf2hgDLm0Xqo0LewvMDm7tIM4O4qxR9tutVSn2cIhhenZXYbDRJyU-mQzoe1u21d8LvgBW035y</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Holte, R.C.</creator><creator>Mkadmi, T.</creator><creator>Zimmer, R.M.</creator><creator>MacDonald, A.J.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>19960801</creationdate><title>Speeding up problem solving by abstraction: a graph oriented approach</title><author>Holte, R.C. ; Mkadmi, T. ; Zimmer, R.M. ; MacDonald, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a9765cebb2081859e42aeb3971916e95c994412765d42c1e80d7d0337c585593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Abstraction</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Problem solving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holte, R.C.</creatorcontrib><creatorcontrib>Mkadmi, T.</creatorcontrib><creatorcontrib>Zimmer, R.M.</creatorcontrib><creatorcontrib>MacDonald, A.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holte, R.C.</au><au>Mkadmi, T.</au><au>Zimmer, R.M.</au><au>MacDonald, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speeding up problem solving by abstraction: a graph oriented approach</atitle><jtitle>Artificial intelligence</jtitle><date>1996-08-01</date><risdate>1996</risdate><volume>85</volume><issue>1</issue><spage>321</spage><epage>361</epage><pages>321-361</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>This paper presents a new perspective on the traditional AI task of problem solving and the techniques of abstraction and refinement. The new perspective is based on the well-known, but little exploited, relation between problem solving and the task of finding a path in a graph between two given nodes. The graph oriented view of abstraction suggests two new families of abstraction techniques, algebraic abstraction and STAR abstraction. The first is shown to be extremely sensitive to the exact manner in which problems are represented. STAR abstraction, by contrast, is very widely applicable and leads to significant speedup in all our experiments. The reformulation of traditional refinement techniques as graph algorithms suggests several enhancements, including an optimal refinement algorithm, and one radically new technique:
alternating search direction. Experiments comparing these techniques on a variety of problems show that
alternating opportunism (AltO) a variant of the new technique, is uniformly superior to all the others.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0004-3702(95)00111-5</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-3702 |
ispartof | Artificial intelligence, 1996-08, Vol.85 (1), p.321-361 |
issn | 0004-3702 1872-7921 |
language | eng |
recordid | cdi_proquest_miscellaneous_57400554 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Abstraction Algorithms Artificial intelligence Problem solving |
title | Speeding up problem solving by abstraction: a graph oriented approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speeding%20up%20problem%20solving%20by%20abstraction:%20a%20graph%20oriented%20approach&rft.jtitle=Artificial%20intelligence&rft.au=Holte,%20R.C.&rft.date=1996-08-01&rft.volume=85&rft.issue=1&rft.spage=321&rft.epage=361&rft.pages=321-361&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/0004-3702(95)00111-5&rft_dat=%3Cproquest_cross%3E57400554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38979321&rft_id=info:pmid/&rft_els_id=0004370295001115&rfr_iscdi=true |