Speeding up problem solving by abstraction: a graph oriented approach

This paper presents a new perspective on the traditional AI task of problem solving and the techniques of abstraction and refinement. The new perspective is based on the well-known, but little exploited, relation between problem solving and the task of finding a path in a graph between two given nod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 1996-08, Vol.85 (1), p.321-361
Hauptverfasser: Holte, R.C., Mkadmi, T., Zimmer, R.M., MacDonald, A.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 361
container_issue 1
container_start_page 321
container_title Artificial intelligence
container_volume 85
creator Holte, R.C.
Mkadmi, T.
Zimmer, R.M.
MacDonald, A.J.
description This paper presents a new perspective on the traditional AI task of problem solving and the techniques of abstraction and refinement. The new perspective is based on the well-known, but little exploited, relation between problem solving and the task of finding a path in a graph between two given nodes. The graph oriented view of abstraction suggests two new families of abstraction techniques, algebraic abstraction and STAR abstraction. The first is shown to be extremely sensitive to the exact manner in which problems are represented. STAR abstraction, by contrast, is very widely applicable and leads to significant speedup in all our experiments. The reformulation of traditional refinement techniques as graph algorithms suggests several enhancements, including an optimal refinement algorithm, and one radically new technique: alternating search direction. Experiments comparing these techniques on a variety of problems show that alternating opportunism (AltO) a variant of the new technique, is uniformly superior to all the others.
doi_str_mv 10.1016/0004-3702(95)00111-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57400554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0004370295001115</els_id><sourcerecordid>57400554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a9765cebb2081859e42aeb3971916e95c994412765d42c1e80d7d0337c585593</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKv_wENOoofVTD6ajQdBSv2Aggd7D9nstF3Z7q7JttB_b9aKRz0NMzzvDPMQcgnsFhhM7hhjMhOa8WujbhgDgEwdkRHkmmfacDgmo1_klJzF-JFaYQyMyOy9QyyrZkW3He1CW9S4obGtd8Oo2FNXxD4431dtc08dXQXXrWkbKmx6LKnrUsT59Tk5Wbo64sVPHZPF02wxfcnmb8-v08d55iXwPnNGT5THouAsh1wZlNxhIYwGAxM0yhsjE5igUnIPmLNSl0wI7VWulBFjcnVYm65-bjH2dlNFj3XtGmy30SotGVNK_guK3GgjOCRQHkAf2hgDLm0Xqo0LewvMDm7tIM4O4qxR9tutVSn2cIhhenZXYbDRJyU-mQzoe1u21d8LvgBW035y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38979321</pqid></control><display><type>article</type><title>Speeding up problem solving by abstraction: a graph oriented approach</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Holte, R.C. ; Mkadmi, T. ; Zimmer, R.M. ; MacDonald, A.J.</creator><creatorcontrib>Holte, R.C. ; Mkadmi, T. ; Zimmer, R.M. ; MacDonald, A.J.</creatorcontrib><description>This paper presents a new perspective on the traditional AI task of problem solving and the techniques of abstraction and refinement. The new perspective is based on the well-known, but little exploited, relation between problem solving and the task of finding a path in a graph between two given nodes. The graph oriented view of abstraction suggests two new families of abstraction techniques, algebraic abstraction and STAR abstraction. The first is shown to be extremely sensitive to the exact manner in which problems are represented. STAR abstraction, by contrast, is very widely applicable and leads to significant speedup in all our experiments. The reformulation of traditional refinement techniques as graph algorithms suggests several enhancements, including an optimal refinement algorithm, and one radically new technique: alternating search direction. Experiments comparing these techniques on a variety of problems show that alternating opportunism (AltO) a variant of the new technique, is uniformly superior to all the others.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/0004-3702(95)00111-5</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Abstraction ; Algorithms ; Artificial intelligence ; Problem solving</subject><ispartof>Artificial intelligence, 1996-08, Vol.85 (1), p.321-361</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-a9765cebb2081859e42aeb3971916e95c994412765d42c1e80d7d0337c585593</citedby><cites>FETCH-LOGICAL-c412t-a9765cebb2081859e42aeb3971916e95c994412765d42c1e80d7d0337c585593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0004-3702(95)00111-5$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Holte, R.C.</creatorcontrib><creatorcontrib>Mkadmi, T.</creatorcontrib><creatorcontrib>Zimmer, R.M.</creatorcontrib><creatorcontrib>MacDonald, A.J.</creatorcontrib><title>Speeding up problem solving by abstraction: a graph oriented approach</title><title>Artificial intelligence</title><description>This paper presents a new perspective on the traditional AI task of problem solving and the techniques of abstraction and refinement. The new perspective is based on the well-known, but little exploited, relation between problem solving and the task of finding a path in a graph between two given nodes. The graph oriented view of abstraction suggests two new families of abstraction techniques, algebraic abstraction and STAR abstraction. The first is shown to be extremely sensitive to the exact manner in which problems are represented. STAR abstraction, by contrast, is very widely applicable and leads to significant speedup in all our experiments. The reformulation of traditional refinement techniques as graph algorithms suggests several enhancements, including an optimal refinement algorithm, and one radically new technique: alternating search direction. Experiments comparing these techniques on a variety of problems show that alternating opportunism (AltO) a variant of the new technique, is uniformly superior to all the others.</description><subject>Abstraction</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Problem solving</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKv_wENOoofVTD6ajQdBSv2Aggd7D9nstF3Z7q7JttB_b9aKRz0NMzzvDPMQcgnsFhhM7hhjMhOa8WujbhgDgEwdkRHkmmfacDgmo1_klJzF-JFaYQyMyOy9QyyrZkW3He1CW9S4obGtd8Oo2FNXxD4431dtc08dXQXXrWkbKmx6LKnrUsT59Tk5Wbo64sVPHZPF02wxfcnmb8-v08d55iXwPnNGT5THouAsh1wZlNxhIYwGAxM0yhsjE5igUnIPmLNSl0wI7VWulBFjcnVYm65-bjH2dlNFj3XtGmy30SotGVNK_guK3GgjOCRQHkAf2hgDLm0Xqo0LewvMDm7tIM4O4qxR9tutVSn2cIhhenZXYbDRJyU-mQzoe1u21d8LvgBW035y</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Holte, R.C.</creator><creator>Mkadmi, T.</creator><creator>Zimmer, R.M.</creator><creator>MacDonald, A.J.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>19960801</creationdate><title>Speeding up problem solving by abstraction: a graph oriented approach</title><author>Holte, R.C. ; Mkadmi, T. ; Zimmer, R.M. ; MacDonald, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a9765cebb2081859e42aeb3971916e95c994412765d42c1e80d7d0337c585593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Abstraction</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Problem solving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holte, R.C.</creatorcontrib><creatorcontrib>Mkadmi, T.</creatorcontrib><creatorcontrib>Zimmer, R.M.</creatorcontrib><creatorcontrib>MacDonald, A.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holte, R.C.</au><au>Mkadmi, T.</au><au>Zimmer, R.M.</au><au>MacDonald, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speeding up problem solving by abstraction: a graph oriented approach</atitle><jtitle>Artificial intelligence</jtitle><date>1996-08-01</date><risdate>1996</risdate><volume>85</volume><issue>1</issue><spage>321</spage><epage>361</epage><pages>321-361</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>This paper presents a new perspective on the traditional AI task of problem solving and the techniques of abstraction and refinement. The new perspective is based on the well-known, but little exploited, relation between problem solving and the task of finding a path in a graph between two given nodes. The graph oriented view of abstraction suggests two new families of abstraction techniques, algebraic abstraction and STAR abstraction. The first is shown to be extremely sensitive to the exact manner in which problems are represented. STAR abstraction, by contrast, is very widely applicable and leads to significant speedup in all our experiments. The reformulation of traditional refinement techniques as graph algorithms suggests several enhancements, including an optimal refinement algorithm, and one radically new technique: alternating search direction. Experiments comparing these techniques on a variety of problems show that alternating opportunism (AltO) a variant of the new technique, is uniformly superior to all the others.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0004-3702(95)00111-5</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 1996-08, Vol.85 (1), p.321-361
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_miscellaneous_57400554
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Abstraction
Algorithms
Artificial intelligence
Problem solving
title Speeding up problem solving by abstraction: a graph oriented approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speeding%20up%20problem%20solving%20by%20abstraction:%20a%20graph%20oriented%20approach&rft.jtitle=Artificial%20intelligence&rft.au=Holte,%20R.C.&rft.date=1996-08-01&rft.volume=85&rft.issue=1&rft.spage=321&rft.epage=361&rft.pages=321-361&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/0004-3702(95)00111-5&rft_dat=%3Cproquest_cross%3E57400554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38979321&rft_id=info:pmid/&rft_els_id=0004370295001115&rfr_iscdi=true