Learning to track the visual motion of contours

A development of a method for tracking visual contours is described. Given an “untrained” tracker, a training motion of an object can be observed over some extended time and stored as an image sequence. The image sequence is used to learn parameters in a stochastic differential equation model. These...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 1995-10, Vol.78 (1), p.179-212
Hauptverfasser: Blake, Andrew, Isard, Michael, Reynard, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 1
container_start_page 179
container_title Artificial intelligence
container_volume 78
creator Blake, Andrew
Isard, Michael
Reynard, David
description A development of a method for tracking visual contours is described. Given an “untrained” tracker, a training motion of an object can be observed over some extended time and stored as an image sequence. The image sequence is used to learn parameters in a stochastic differential equation model. These are used, in turn, to build a tracker whose predictor imitates the motion in the training set. Tests show that the resulting trackers can be markedly tuned to desired curve shapes and classes of motions.
doi_str_mv 10.1016/0004-3702(95)00032-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57361601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0004370295000321</els_id><sourcerecordid>38858823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-de565deed39462104fa1657d58658aa10ed0eb09a3da3e6d6ea0bc3a3acd856f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWB__wMWsRBdjbyaTTLIRpPiCghtdhzS5o9HppCaZgv_ejhWXdnW48N3D4SPkjMIVBSqmAFCXrIHqQvHLzcGqku6RCZVNVTaqovtk8occkqOU3kdIKToh0zma2Pv-tcihyNHYjyK_YbH2aTBdsQzZh74IbWFDn8MQ0wk5aE2X8PQ3j8nL3e3z7KGcP90_zm7mpeWgcumQC-4QHVO1qCjUraGCN45LwaUxFNABLkAZ5gxD4QQaWFhmmLFOctGyY3K-7V3F8Dlgynrpk8WuMz2GIWneMEEF0J0gk5JLWbGdYMVEA5LWG7DegjaGlCK2ehX90sQvTUGPvvUoU48yteL6x7ceh1xv33CjZe0x6mQ99hadj2izdsH_X_ANsbaFyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23670814</pqid></control><display><type>article</type><title>Learning to track the visual motion of contours</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Blake, Andrew ; Isard, Michael ; Reynard, David</creator><creatorcontrib>Blake, Andrew ; Isard, Michael ; Reynard, David</creatorcontrib><description>A development of a method for tracking visual contours is described. Given an “untrained” tracker, a training motion of an object can be observed over some extended time and stored as an image sequence. The image sequence is used to learn parameters in a stochastic differential equation model. These are used, in turn, to build a tracker whose predictor imitates the motion in the training set. Tests show that the resulting trackers can be markedly tuned to desired curve shapes and classes of motions.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/0004-3702(95)00032-1</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial intelligence ; Computers ; Information technology ; New technology ; Tracking ; Vision processing</subject><ispartof>Artificial intelligence, 1995-10, Vol.78 (1), p.179-212</ispartof><rights>1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-de565deed39462104fa1657d58658aa10ed0eb09a3da3e6d6ea0bc3a3acd856f3</citedby><cites>FETCH-LOGICAL-c509t-de565deed39462104fa1657d58658aa10ed0eb09a3da3e6d6ea0bc3a3acd856f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0004370295000321$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Blake, Andrew</creatorcontrib><creatorcontrib>Isard, Michael</creatorcontrib><creatorcontrib>Reynard, David</creatorcontrib><title>Learning to track the visual motion of contours</title><title>Artificial intelligence</title><description>A development of a method for tracking visual contours is described. Given an “untrained” tracker, a training motion of an object can be observed over some extended time and stored as an image sequence. The image sequence is used to learn parameters in a stochastic differential equation model. These are used, in turn, to build a tracker whose predictor imitates the motion in the training set. Tests show that the resulting trackers can be markedly tuned to desired curve shapes and classes of motions.</description><subject>Artificial intelligence</subject><subject>Computers</subject><subject>Information technology</subject><subject>New technology</subject><subject>Tracking</subject><subject>Vision processing</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWB__wMWsRBdjbyaTTLIRpPiCghtdhzS5o9HppCaZgv_ejhWXdnW48N3D4SPkjMIVBSqmAFCXrIHqQvHLzcGqku6RCZVNVTaqovtk8occkqOU3kdIKToh0zma2Pv-tcihyNHYjyK_YbH2aTBdsQzZh74IbWFDn8MQ0wk5aE2X8PQ3j8nL3e3z7KGcP90_zm7mpeWgcumQC-4QHVO1qCjUraGCN45LwaUxFNABLkAZ5gxD4QQaWFhmmLFOctGyY3K-7V3F8Dlgynrpk8WuMz2GIWneMEEF0J0gk5JLWbGdYMVEA5LWG7DegjaGlCK2ehX90sQvTUGPvvUoU48yteL6x7ceh1xv33CjZe0x6mQ99hadj2izdsH_X_ANsbaFyg</recordid><startdate>19951001</startdate><enddate>19951001</enddate><creator>Blake, Andrew</creator><creator>Isard, Michael</creator><creator>Reynard, David</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>19951001</creationdate><title>Learning to track the visual motion of contours</title><author>Blake, Andrew ; Isard, Michael ; Reynard, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-de565deed39462104fa1657d58658aa10ed0eb09a3da3e6d6ea0bc3a3acd856f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Artificial intelligence</topic><topic>Computers</topic><topic>Information technology</topic><topic>New technology</topic><topic>Tracking</topic><topic>Vision processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blake, Andrew</creatorcontrib><creatorcontrib>Isard, Michael</creatorcontrib><creatorcontrib>Reynard, David</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blake, Andrew</au><au>Isard, Michael</au><au>Reynard, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to track the visual motion of contours</atitle><jtitle>Artificial intelligence</jtitle><date>1995-10-01</date><risdate>1995</risdate><volume>78</volume><issue>1</issue><spage>179</spage><epage>212</epage><pages>179-212</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>A development of a method for tracking visual contours is described. Given an “untrained” tracker, a training motion of an object can be observed over some extended time and stored as an image sequence. The image sequence is used to learn parameters in a stochastic differential equation model. These are used, in turn, to build a tracker whose predictor imitates the motion in the training set. Tests show that the resulting trackers can be markedly tuned to desired curve shapes and classes of motions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0004-3702(95)00032-1</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 1995-10, Vol.78 (1), p.179-212
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_miscellaneous_57361601
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial intelligence
Computers
Information technology
New technology
Tracking
Vision processing
title Learning to track the visual motion of contours
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20track%20the%20visual%20motion%20of%20contours&rft.jtitle=Artificial%20intelligence&rft.au=Blake,%20Andrew&rft.date=1995-10-01&rft.volume=78&rft.issue=1&rft.spage=179&rft.epage=212&rft.pages=179-212&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/0004-3702(95)00032-1&rft_dat=%3Cproquest_cross%3E38858823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23670814&rft_id=info:pmid/&rft_els_id=0004370295000321&rfr_iscdi=true