Image-data compression using edge-optimizing algorithm for WFA inference

Weighted finite automata (WFA) define real functions, in particular, grayness functions of graytone images. Earlier, the authors gave an automatic encoding (inference) algorithm that converts an arbitrary function (graytone image) into a WFA that can (approximately) regenerate it. The WFA obtained b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing & management 1994-11, Vol.30 (6), p.829-838
Hauptverfasser: Culik, Karel, Kari, Jarkko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 838
container_issue 6
container_start_page 829
container_title Information processing & management
container_volume 30
creator Culik, Karel
Kari, Jarkko
description Weighted finite automata (WFA) define real functions, in particular, grayness functions of graytone images. Earlier, the authors gave an automatic encoding (inference) algorithm that converts an arbitrary function (graytone image) into a WFA that can (approximately) regenerate it. The WFA obtained by this algorithm had (almost) minimal number of states, but a relatively large number of edges. Here we give an inference algorithm that produces a WFA with not necessarily minimal number of states, but with a relatively small number of edges. Then we discuss image-data compression results based on the new inference algorithm alone and in combination with wavelets. It is a simpler and more efficient method than the other known fractal compression methods. It produces better results than wavelets alone.
doi_str_mv 10.1016/0306-4573(94)90010-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57323351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ493363</ericid><els_id>0306457394900108</els_id><sourcerecordid>50777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-a4ad93a51482d3d7986a402a007ead074d72c9df70b0110fc1b1e4a763f046d73</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouH78Aw9FQfRQnWnSprkIy-LHiuBF8Rhikq6RbbMmXUF_vakrexD0NIT3eWcm7xBygHCGgNU5UKhyVnJ6ItipAEDI6w0ywprTvKQcN8lojWyTnRhfAYCVWIzIzbRVM5sb1atM-3YRbIzOd9kyum6WWZM0v-hd6z6Ht5rPfHD9S5s1PmRPV-PMdY0NttN2j2w1ah7t_k_dJY9Xlw-Tm_zu_no6Gd_lmiH2uWLKCKpKZHVhqOGirhSDQgFwqwxwZnihhWk4PAMiNBqf0TLFK9oAqwynu-R41XcR_NvSxl62Lmo7n6vO-mWU6YsFpSUm8PAX-OqXoUu7SRRMUFHyIkFHf0IMK6QlL6tEsRWlg48x2EYugmtV-JAIcriAHOKVQ7xSMPl9AVkn28HKZoPTa8vlbRpOK5rkix85xfXubJBRuyFK44LVvTTe_d__C2Yvk-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1416135756</pqid></control><display><type>article</type><title>Image-data compression using edge-optimizing algorithm for WFA inference</title><source>Elsevier ScienceDirect Journals</source><source>Periodicals Index Online</source><creator>Culik, Karel ; Kari, Jarkko</creator><creatorcontrib>Culik, Karel ; Kari, Jarkko</creatorcontrib><description>Weighted finite automata (WFA) define real functions, in particular, grayness functions of graytone images. Earlier, the authors gave an automatic encoding (inference) algorithm that converts an arbitrary function (graytone image) into a WFA that can (approximately) regenerate it. The WFA obtained by this algorithm had (almost) minimal number of states, but a relatively large number of edges. Here we give an inference algorithm that produces a WFA with not necessarily minimal number of states, but with a relatively small number of edges. Then we discuss image-data compression results based on the new inference algorithm alone and in combination with wavelets. It is a simpler and more efficient method than the other known fractal compression methods. It produces better results than wavelets alone.</description><identifier>ISSN: 0306-4573</identifier><identifier>EISSN: 1873-5371</identifier><identifier>DOI: 10.1016/0306-4573(94)90010-8</identifier><identifier>CODEN: IPMADK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Coding ; Comparative Analysis ; Data Compression ; Data Processing ; Digital Imagery ; Evaluation ; Examples ; Gray Scales ; Illustrations ; Image processing system ; Information Storage ; Information Theory ; Mathematical Models ; Optimization ; Techniques ; Visual Imagery</subject><ispartof>Information processing &amp; management, 1994-11, Vol.30 (6), p.829-838</ispartof><rights>1994</rights><rights>Copyright Pergamon Press Inc. Nov/Dec 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-a4ad93a51482d3d7986a402a007ead074d72c9df70b0110fc1b1e4a763f046d73</citedby><cites>FETCH-LOGICAL-c411t-a4ad93a51482d3d7986a402a007ead074d72c9df70b0110fc1b1e4a763f046d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0306457394900108$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27848,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ493363$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Culik, Karel</creatorcontrib><creatorcontrib>Kari, Jarkko</creatorcontrib><title>Image-data compression using edge-optimizing algorithm for WFA inference</title><title>Information processing &amp; management</title><description>Weighted finite automata (WFA) define real functions, in particular, grayness functions of graytone images. Earlier, the authors gave an automatic encoding (inference) algorithm that converts an arbitrary function (graytone image) into a WFA that can (approximately) regenerate it. The WFA obtained by this algorithm had (almost) minimal number of states, but a relatively large number of edges. Here we give an inference algorithm that produces a WFA with not necessarily minimal number of states, but with a relatively small number of edges. Then we discuss image-data compression results based on the new inference algorithm alone and in combination with wavelets. It is a simpler and more efficient method than the other known fractal compression methods. It produces better results than wavelets alone.</description><subject>Algorithms</subject><subject>Coding</subject><subject>Comparative Analysis</subject><subject>Data Compression</subject><subject>Data Processing</subject><subject>Digital Imagery</subject><subject>Evaluation</subject><subject>Examples</subject><subject>Gray Scales</subject><subject>Illustrations</subject><subject>Image processing system</subject><subject>Information Storage</subject><subject>Information Theory</subject><subject>Mathematical Models</subject><subject>Optimization</subject><subject>Techniques</subject><subject>Visual Imagery</subject><issn>0306-4573</issn><issn>1873-5371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9kU1LxDAQhoMouH78Aw9FQfRQnWnSprkIy-LHiuBF8Rhikq6RbbMmXUF_vakrexD0NIT3eWcm7xBygHCGgNU5UKhyVnJ6ItipAEDI6w0ywprTvKQcN8lojWyTnRhfAYCVWIzIzbRVM5sb1atM-3YRbIzOd9kyum6WWZM0v-hd6z6Ht5rPfHD9S5s1PmRPV-PMdY0NttN2j2w1ah7t_k_dJY9Xlw-Tm_zu_no6Gd_lmiH2uWLKCKpKZHVhqOGirhSDQgFwqwxwZnihhWk4PAMiNBqf0TLFK9oAqwynu-R41XcR_NvSxl62Lmo7n6vO-mWU6YsFpSUm8PAX-OqXoUu7SRRMUFHyIkFHf0IMK6QlL6tEsRWlg48x2EYugmtV-JAIcriAHOKVQ7xSMPl9AVkn28HKZoPTa8vlbRpOK5rkix85xfXubJBRuyFK44LVvTTe_d__C2Yvk-A</recordid><startdate>19941101</startdate><enddate>19941101</enddate><creator>Culik, Karel</creator><creator>Kari, Jarkko</creator><general>Elsevier Ltd</general><general>Pergamon Press</general><general>Elsevier Science Ltd</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>SFNNT</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>19941101</creationdate><title>Image-data compression using edge-optimizing algorithm for WFA inference</title><author>Culik, Karel ; Kari, Jarkko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-a4ad93a51482d3d7986a402a007ead074d72c9df70b0110fc1b1e4a763f046d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Algorithms</topic><topic>Coding</topic><topic>Comparative Analysis</topic><topic>Data Compression</topic><topic>Data Processing</topic><topic>Digital Imagery</topic><topic>Evaluation</topic><topic>Examples</topic><topic>Gray Scales</topic><topic>Illustrations</topic><topic>Image processing system</topic><topic>Information Storage</topic><topic>Information Theory</topic><topic>Mathematical Models</topic><topic>Optimization</topic><topic>Techniques</topic><topic>Visual Imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Culik, Karel</creatorcontrib><creatorcontrib>Kari, Jarkko</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Periodicals Index Online Segment 44</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Information processing &amp; management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Culik, Karel</au><au>Kari, Jarkko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ493363</ericid><atitle>Image-data compression using edge-optimizing algorithm for WFA inference</atitle><jtitle>Information processing &amp; management</jtitle><date>1994-11-01</date><risdate>1994</risdate><volume>30</volume><issue>6</issue><spage>829</spage><epage>838</epage><pages>829-838</pages><issn>0306-4573</issn><eissn>1873-5371</eissn><coden>IPMADK</coden><abstract>Weighted finite automata (WFA) define real functions, in particular, grayness functions of graytone images. Earlier, the authors gave an automatic encoding (inference) algorithm that converts an arbitrary function (graytone image) into a WFA that can (approximately) regenerate it. The WFA obtained by this algorithm had (almost) minimal number of states, but a relatively large number of edges. Here we give an inference algorithm that produces a WFA with not necessarily minimal number of states, but with a relatively small number of edges. Then we discuss image-data compression results based on the new inference algorithm alone and in combination with wavelets. It is a simpler and more efficient method than the other known fractal compression methods. It produces better results than wavelets alone.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0306-4573(94)90010-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4573
ispartof Information processing & management, 1994-11, Vol.30 (6), p.829-838
issn 0306-4573
1873-5371
language eng
recordid cdi_proquest_miscellaneous_57323351
source Elsevier ScienceDirect Journals; Periodicals Index Online
subjects Algorithms
Coding
Comparative Analysis
Data Compression
Data Processing
Digital Imagery
Evaluation
Examples
Gray Scales
Illustrations
Image processing system
Information Storage
Information Theory
Mathematical Models
Optimization
Techniques
Visual Imagery
title Image-data compression using edge-optimizing algorithm for WFA inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-data%20compression%20using%20edge-optimizing%20algorithm%20for%20WFA%20inference&rft.jtitle=Information%20processing%20&%20management&rft.au=Culik,%20Karel&rft.date=1994-11-01&rft.volume=30&rft.issue=6&rft.spage=829&rft.epage=838&rft.pages=829-838&rft.issn=0306-4573&rft.eissn=1873-5371&rft.coden=IPMADK&rft_id=info:doi/10.1016/0306-4573(94)90010-8&rft_dat=%3Cproquest_cross%3E50777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1416135756&rft_id=info:pmid/&rft_ericid=EJ493363&rft_els_id=0306457394900108&rfr_iscdi=true