Image-data compression using edge-optimizing algorithm for WFA inference
Weighted finite automata (WFA) define real functions, in particular, grayness functions of graytone images. Earlier, the authors gave an automatic encoding (inference) algorithm that converts an arbitrary function (graytone image) into a WFA that can (approximately) regenerate it. The WFA obtained b...
Gespeichert in:
Veröffentlicht in: | Information processing & management 1994-11, Vol.30 (6), p.829-838 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 838 |
---|---|
container_issue | 6 |
container_start_page | 829 |
container_title | Information processing & management |
container_volume | 30 |
creator | Culik, Karel Kari, Jarkko |
description | Weighted finite automata (WFA) define real functions, in particular, grayness functions of graytone images. Earlier, the authors gave an automatic encoding (inference) algorithm that converts an arbitrary function (graytone image) into a WFA that can (approximately) regenerate it. The WFA obtained by this algorithm had (almost) minimal number of states, but a relatively large number of edges. Here we give an inference algorithm that produces a WFA with not necessarily minimal number of states, but with a relatively small number of edges. Then we discuss image-data compression results based on the new inference algorithm alone and in combination with wavelets. It is a simpler and more efficient method than the other known fractal compression methods. It produces better results than wavelets alone. |
doi_str_mv | 10.1016/0306-4573(94)90010-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57323351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ493363</ericid><els_id>0306457394900108</els_id><sourcerecordid>50777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-a4ad93a51482d3d7986a402a007ead074d72c9df70b0110fc1b1e4a763f046d73</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouH78Aw9FQfRQnWnSprkIy-LHiuBF8Rhikq6RbbMmXUF_vakrexD0NIT3eWcm7xBygHCGgNU5UKhyVnJ6ItipAEDI6w0ywprTvKQcN8lojWyTnRhfAYCVWIzIzbRVM5sb1atM-3YRbIzOd9kyum6WWZM0v-hd6z6Ht5rPfHD9S5s1PmRPV-PMdY0NttN2j2w1ah7t_k_dJY9Xlw-Tm_zu_no6Gd_lmiH2uWLKCKpKZHVhqOGirhSDQgFwqwxwZnihhWk4PAMiNBqf0TLFK9oAqwynu-R41XcR_NvSxl62Lmo7n6vO-mWU6YsFpSUm8PAX-OqXoUu7SRRMUFHyIkFHf0IMK6QlL6tEsRWlg48x2EYugmtV-JAIcriAHOKVQ7xSMPl9AVkn28HKZoPTa8vlbRpOK5rkix85xfXubJBRuyFK44LVvTTe_d__C2Yvk-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1416135756</pqid></control><display><type>article</type><title>Image-data compression using edge-optimizing algorithm for WFA inference</title><source>Elsevier ScienceDirect Journals</source><source>Periodicals Index Online</source><creator>Culik, Karel ; Kari, Jarkko</creator><creatorcontrib>Culik, Karel ; Kari, Jarkko</creatorcontrib><description>Weighted finite automata (WFA) define real functions, in particular, grayness functions of graytone images. Earlier, the authors gave an automatic encoding (inference) algorithm that converts an arbitrary function (graytone image) into a WFA that can (approximately) regenerate it. The WFA obtained by this algorithm had (almost) minimal number of states, but a relatively large number of edges. Here we give an inference algorithm that produces a WFA with not necessarily minimal number of states, but with a relatively small number of edges. Then we discuss image-data compression results based on the new inference algorithm alone and in combination with wavelets. It is a simpler and more efficient method than the other known fractal compression methods. It produces better results than wavelets alone.</description><identifier>ISSN: 0306-4573</identifier><identifier>EISSN: 1873-5371</identifier><identifier>DOI: 10.1016/0306-4573(94)90010-8</identifier><identifier>CODEN: IPMADK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Coding ; Comparative Analysis ; Data Compression ; Data Processing ; Digital Imagery ; Evaluation ; Examples ; Gray Scales ; Illustrations ; Image processing system ; Information Storage ; Information Theory ; Mathematical Models ; Optimization ; Techniques ; Visual Imagery</subject><ispartof>Information processing & management, 1994-11, Vol.30 (6), p.829-838</ispartof><rights>1994</rights><rights>Copyright Pergamon Press Inc. Nov/Dec 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-a4ad93a51482d3d7986a402a007ead074d72c9df70b0110fc1b1e4a763f046d73</citedby><cites>FETCH-LOGICAL-c411t-a4ad93a51482d3d7986a402a007ead074d72c9df70b0110fc1b1e4a763f046d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0306457394900108$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27848,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ493363$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Culik, Karel</creatorcontrib><creatorcontrib>Kari, Jarkko</creatorcontrib><title>Image-data compression using edge-optimizing algorithm for WFA inference</title><title>Information processing & management</title><description>Weighted finite automata (WFA) define real functions, in particular, grayness functions of graytone images. Earlier, the authors gave an automatic encoding (inference) algorithm that converts an arbitrary function (graytone image) into a WFA that can (approximately) regenerate it. The WFA obtained by this algorithm had (almost) minimal number of states, but a relatively large number of edges. Here we give an inference algorithm that produces a WFA with not necessarily minimal number of states, but with a relatively small number of edges. Then we discuss image-data compression results based on the new inference algorithm alone and in combination with wavelets. It is a simpler and more efficient method than the other known fractal compression methods. It produces better results than wavelets alone.</description><subject>Algorithms</subject><subject>Coding</subject><subject>Comparative Analysis</subject><subject>Data Compression</subject><subject>Data Processing</subject><subject>Digital Imagery</subject><subject>Evaluation</subject><subject>Examples</subject><subject>Gray Scales</subject><subject>Illustrations</subject><subject>Image processing system</subject><subject>Information Storage</subject><subject>Information Theory</subject><subject>Mathematical Models</subject><subject>Optimization</subject><subject>Techniques</subject><subject>Visual Imagery</subject><issn>0306-4573</issn><issn>1873-5371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9kU1LxDAQhoMouH78Aw9FQfRQnWnSprkIy-LHiuBF8Rhikq6RbbMmXUF_vakrexD0NIT3eWcm7xBygHCGgNU5UKhyVnJ6ItipAEDI6w0ywprTvKQcN8lojWyTnRhfAYCVWIzIzbRVM5sb1atM-3YRbIzOd9kyum6WWZM0v-hd6z6Ht5rPfHD9S5s1PmRPV-PMdY0NttN2j2w1ah7t_k_dJY9Xlw-Tm_zu_no6Gd_lmiH2uWLKCKpKZHVhqOGirhSDQgFwqwxwZnihhWk4PAMiNBqf0TLFK9oAqwynu-R41XcR_NvSxl62Lmo7n6vO-mWU6YsFpSUm8PAX-OqXoUu7SRRMUFHyIkFHf0IMK6QlL6tEsRWlg48x2EYugmtV-JAIcriAHOKVQ7xSMPl9AVkn28HKZoPTa8vlbRpOK5rkix85xfXubJBRuyFK44LVvTTe_d__C2Yvk-A</recordid><startdate>19941101</startdate><enddate>19941101</enddate><creator>Culik, Karel</creator><creator>Kari, Jarkko</creator><general>Elsevier Ltd</general><general>Pergamon Press</general><general>Elsevier Science Ltd</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>SFNNT</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>19941101</creationdate><title>Image-data compression using edge-optimizing algorithm for WFA inference</title><author>Culik, Karel ; Kari, Jarkko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-a4ad93a51482d3d7986a402a007ead074d72c9df70b0110fc1b1e4a763f046d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Algorithms</topic><topic>Coding</topic><topic>Comparative Analysis</topic><topic>Data Compression</topic><topic>Data Processing</topic><topic>Digital Imagery</topic><topic>Evaluation</topic><topic>Examples</topic><topic>Gray Scales</topic><topic>Illustrations</topic><topic>Image processing system</topic><topic>Information Storage</topic><topic>Information Theory</topic><topic>Mathematical Models</topic><topic>Optimization</topic><topic>Techniques</topic><topic>Visual Imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Culik, Karel</creatorcontrib><creatorcontrib>Kari, Jarkko</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Periodicals Index Online Segment 44</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Information processing & management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Culik, Karel</au><au>Kari, Jarkko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ493363</ericid><atitle>Image-data compression using edge-optimizing algorithm for WFA inference</atitle><jtitle>Information processing & management</jtitle><date>1994-11-01</date><risdate>1994</risdate><volume>30</volume><issue>6</issue><spage>829</spage><epage>838</epage><pages>829-838</pages><issn>0306-4573</issn><eissn>1873-5371</eissn><coden>IPMADK</coden><abstract>Weighted finite automata (WFA) define real functions, in particular, grayness functions of graytone images. Earlier, the authors gave an automatic encoding (inference) algorithm that converts an arbitrary function (graytone image) into a WFA that can (approximately) regenerate it. The WFA obtained by this algorithm had (almost) minimal number of states, but a relatively large number of edges. Here we give an inference algorithm that produces a WFA with not necessarily minimal number of states, but with a relatively small number of edges. Then we discuss image-data compression results based on the new inference algorithm alone and in combination with wavelets. It is a simpler and more efficient method than the other known fractal compression methods. It produces better results than wavelets alone.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0306-4573(94)90010-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4573 |
ispartof | Information processing & management, 1994-11, Vol.30 (6), p.829-838 |
issn | 0306-4573 1873-5371 |
language | eng |
recordid | cdi_proquest_miscellaneous_57323351 |
source | Elsevier ScienceDirect Journals; Periodicals Index Online |
subjects | Algorithms Coding Comparative Analysis Data Compression Data Processing Digital Imagery Evaluation Examples Gray Scales Illustrations Image processing system Information Storage Information Theory Mathematical Models Optimization Techniques Visual Imagery |
title | Image-data compression using edge-optimizing algorithm for WFA inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-data%20compression%20using%20edge-optimizing%20algorithm%20for%20WFA%20inference&rft.jtitle=Information%20processing%20&%20management&rft.au=Culik,%20Karel&rft.date=1994-11-01&rft.volume=30&rft.issue=6&rft.spage=829&rft.epage=838&rft.pages=829-838&rft.issn=0306-4573&rft.eissn=1873-5371&rft.coden=IPMADK&rft_id=info:doi/10.1016/0306-4573(94)90010-8&rft_dat=%3Cproquest_cross%3E50777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1416135756&rft_id=info:pmid/&rft_ericid=EJ493363&rft_els_id=0306457394900108&rfr_iscdi=true |