Childhood malaria in the Gambia: a case-study in model-based geostatistics
The paper develops a spatial generalized linear mixed model to describe the variation in the prevalence of malaria among a sample of village resident children in the Gambia. The response from each child is a binary indicator of the presence of malarial parasites in a blood sample. The model includes...
Gespeichert in:
Veröffentlicht in: | Applied statistics 2002-01, Vol.51 (4), p.493-506 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 506 |
---|---|
container_issue | 4 |
container_start_page | 493 |
container_title | Applied statistics |
container_volume | 51 |
creator | Diggle, Peter Moyeed, Rana Rowlingson, Barry Thomson, Madeleine |
description | The paper develops a spatial generalized linear mixed model to describe the variation in the prevalence of malaria among a sample of village resident children in the Gambia. The response from each child is a binary indicator of the presence of malarial parasites in a blood sample. The model includes terms for the effects of child level covariates (age and bed net use), village level covariates (inclusion or exclusion from the primary health care system and greenness of surrounding vegetation as derived from satellite information) and separate components for residual spatial and non-spatial extrabinomial variation. The results confirm and quantify the progressive increase in prevalence with age, and the protective effects of bed nets. They also show that the extrabinomial variation is spatially structured, suggesting an environmental effect rather than variation in familial susceptibility. Neither inclusion in the primary health care system nor the greenness of the surrounding vegetation appeared to affect the prevalence of malaria. The method of inference was Bayesian using vague priors and a Markov chain Monte Carlo implementation. |
doi_str_mv | 10.1111/1467-9876.00283 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_39170115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3592624</jstor_id><sourcerecordid>3592624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5123-ae6ef5a67a34e910ab83853bd78aa26a61f85eed277fceda1278edb8a2a86f0f3</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRBILIUzFw65wC2tP-KPcEMLbKnKh2j5uFkTe8J6STaLnS3df49DquWIpfFI894bPz0T8pTRU5bPGauULmuj1Sml3Ih7ZHGc3CcLSoUsay6rh-RRShuaD6PVglws16Hz62HwRQ8dxABF2BbjGosV9E2AlwUUDhKWadz7w4T1g8eubPLMFz9wSCOMIY3BpcfkQQtdwid3_YR8efvmenleXn5cvVu-uiydZFyUgApbCUqDqLBmFBojjBSN1waAK1CsNRLRc61bhx4Y1wZ9Y4CDUS1txQl5Me_dxeHXHtNo-5Acdh1scdgnK2qmKWMyE89mootDShFbu4uhh3iwjNopMzslZKeE7N_MsuJiVkTcoTvSmw42Q0zJ2RsrQLJ8HXLxLMot5Kpy7aZeCyupsuuxz8ue3_mE5KBrI2xdSP88iNpwXU2PVjPvd-jw8D-P9vPV1XL2-myWbdI4xKNMyJorXmW4nOH8OXh7hCH-tEoLLe23Dyt7_f7T-euv37ldiT_wMqzH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>39170115</pqid></control><display><type>article</type><title>Childhood malaria in the Gambia: a case-study in model-based geostatistics</title><source>RePEc</source><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Diggle, Peter ; Moyeed, Rana ; Rowlingson, Barry ; Thomson, Madeleine</creator><creatorcontrib>Diggle, Peter ; Moyeed, Rana ; Rowlingson, Barry ; Thomson, Madeleine</creatorcontrib><description>The paper develops a spatial generalized linear mixed model to describe the variation in the prevalence of malaria among a sample of village resident children in the Gambia. The response from each child is a binary indicator of the presence of malarial parasites in a blood sample. The model includes terms for the effects of child level covariates (age and bed net use), village level covariates (inclusion or exclusion from the primary health care system and greenness of surrounding vegetation as derived from satellite information) and separate components for residual spatial and non-spatial extrabinomial variation. The results confirm and quantify the progressive increase in prevalence with age, and the protective effects of bed nets. They also show that the extrabinomial variation is spatially structured, suggesting an environmental effect rather than variation in familial susceptibility. Neither inclusion in the primary health care system nor the greenness of the surrounding vegetation appeared to affect the prevalence of malaria. The method of inference was Bayesian using vague priors and a Markov chain Monte Carlo implementation.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/1467-9876.00283</identifier><identifier>CODEN: APSTAG</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishers</publisher><subject>Applications ; Artificial satellites ; Biology, psychology, social sciences ; Child health ; Children ; Covariance matrices ; Epidemiology ; Exact sciences and technology ; Extrabinomial variation ; Gambia ; Geostatistics ; Insecticide-treated bed nets ; Linear inference, regression ; Malaria ; Mathematics ; Medical sciences ; Modeling ; Musical intervals ; Parametric inference ; Parametric models ; Probability and statistics ; Public health ; Satellite data ; Sciences and techniques of general use ; Spatial models ; Spatial statistics ; Statistical methods ; Statistics</subject><ispartof>Applied statistics, 2002-01, Vol.51 (4), p.493-506</ispartof><rights>Copyright 2002 The Royal Statistical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5123-ae6ef5a67a34e910ab83853bd78aa26a61f85eed277fceda1278edb8a2a86f0f3</citedby><cites>FETCH-LOGICAL-c5123-ae6ef5a67a34e910ab83853bd78aa26a61f85eed277fceda1278edb8a2a86f0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3592624$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3592624$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,4008,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13982743$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssc/v_3a51_3ay_3a2002_3ai_3a4_3ap_3a493-506.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Diggle, Peter</creatorcontrib><creatorcontrib>Moyeed, Rana</creatorcontrib><creatorcontrib>Rowlingson, Barry</creatorcontrib><creatorcontrib>Thomson, Madeleine</creatorcontrib><title>Childhood malaria in the Gambia: a case-study in model-based geostatistics</title><title>Applied statistics</title><description>The paper develops a spatial generalized linear mixed model to describe the variation in the prevalence of malaria among a sample of village resident children in the Gambia. The response from each child is a binary indicator of the presence of malarial parasites in a blood sample. The model includes terms for the effects of child level covariates (age and bed net use), village level covariates (inclusion or exclusion from the primary health care system and greenness of surrounding vegetation as derived from satellite information) and separate components for residual spatial and non-spatial extrabinomial variation. The results confirm and quantify the progressive increase in prevalence with age, and the protective effects of bed nets. They also show that the extrabinomial variation is spatially structured, suggesting an environmental effect rather than variation in familial susceptibility. Neither inclusion in the primary health care system nor the greenness of the surrounding vegetation appeared to affect the prevalence of malaria. The method of inference was Bayesian using vague priors and a Markov chain Monte Carlo implementation.</description><subject>Applications</subject><subject>Artificial satellites</subject><subject>Biology, psychology, social sciences</subject><subject>Child health</subject><subject>Children</subject><subject>Covariance matrices</subject><subject>Epidemiology</subject><subject>Exact sciences and technology</subject><subject>Extrabinomial variation</subject><subject>Gambia</subject><subject>Geostatistics</subject><subject>Insecticide-treated bed nets</subject><subject>Linear inference, regression</subject><subject>Malaria</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Modeling</subject><subject>Musical intervals</subject><subject>Parametric inference</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Public health</subject><subject>Satellite data</subject><subject>Sciences and techniques of general use</subject><subject>Spatial models</subject><subject>Spatial statistics</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUU1v1DAQtRBILIUzFw65wC2tP-KPcEMLbKnKh2j5uFkTe8J6STaLnS3df49DquWIpfFI894bPz0T8pTRU5bPGauULmuj1Sml3Ih7ZHGc3CcLSoUsay6rh-RRShuaD6PVglws16Hz62HwRQ8dxABF2BbjGosV9E2AlwUUDhKWadz7w4T1g8eubPLMFz9wSCOMIY3BpcfkQQtdwid3_YR8efvmenleXn5cvVu-uiydZFyUgApbCUqDqLBmFBojjBSN1waAK1CsNRLRc61bhx4Y1wZ9Y4CDUS1txQl5Me_dxeHXHtNo-5Acdh1scdgnK2qmKWMyE89mootDShFbu4uhh3iwjNopMzslZKeE7N_MsuJiVkTcoTvSmw42Q0zJ2RsrQLJ8HXLxLMot5Kpy7aZeCyupsuuxz8ue3_mE5KBrI2xdSP88iNpwXU2PVjPvd-jw8D-P9vPV1XL2-myWbdI4xKNMyJorXmW4nOH8OXh7hCH-tEoLLe23Dyt7_f7T-euv37ldiT_wMqzH</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Diggle, Peter</creator><creator>Moyeed, Rana</creator><creator>Rowlingson, Barry</creator><creator>Thomson, Madeleine</creator><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20020101</creationdate><title>Childhood malaria in the Gambia: a case-study in model-based geostatistics</title><author>Diggle, Peter ; Moyeed, Rana ; Rowlingson, Barry ; Thomson, Madeleine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5123-ae6ef5a67a34e910ab83853bd78aa26a61f85eed277fceda1278edb8a2a86f0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applications</topic><topic>Artificial satellites</topic><topic>Biology, psychology, social sciences</topic><topic>Child health</topic><topic>Children</topic><topic>Covariance matrices</topic><topic>Epidemiology</topic><topic>Exact sciences and technology</topic><topic>Extrabinomial variation</topic><topic>Gambia</topic><topic>Geostatistics</topic><topic>Insecticide-treated bed nets</topic><topic>Linear inference, regression</topic><topic>Malaria</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Modeling</topic><topic>Musical intervals</topic><topic>Parametric inference</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Public health</topic><topic>Satellite data</topic><topic>Sciences and techniques of general use</topic><topic>Spatial models</topic><topic>Spatial statistics</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diggle, Peter</creatorcontrib><creatorcontrib>Moyeed, Rana</creatorcontrib><creatorcontrib>Rowlingson, Barry</creatorcontrib><creatorcontrib>Thomson, Madeleine</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diggle, Peter</au><au>Moyeed, Rana</au><au>Rowlingson, Barry</au><au>Thomson, Madeleine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Childhood malaria in the Gambia: a case-study in model-based geostatistics</atitle><jtitle>Applied statistics</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>51</volume><issue>4</issue><spage>493</spage><epage>506</epage><pages>493-506</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><coden>APSTAG</coden><abstract>The paper develops a spatial generalized linear mixed model to describe the variation in the prevalence of malaria among a sample of village resident children in the Gambia. The response from each child is a binary indicator of the presence of malarial parasites in a blood sample. The model includes terms for the effects of child level covariates (age and bed net use), village level covariates (inclusion or exclusion from the primary health care system and greenness of surrounding vegetation as derived from satellite information) and separate components for residual spatial and non-spatial extrabinomial variation. The results confirm and quantify the progressive increase in prevalence with age, and the protective effects of bed nets. They also show that the extrabinomial variation is spatially structured, suggesting an environmental effect rather than variation in familial susceptibility. Neither inclusion in the primary health care system nor the greenness of the surrounding vegetation appeared to affect the prevalence of malaria. The method of inference was Bayesian using vague priors and a Markov chain Monte Carlo implementation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishers</pub><doi>10.1111/1467-9876.00283</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9254 |
ispartof | Applied statistics, 2002-01, Vol.51 (4), p.493-506 |
issn | 0035-9254 1467-9876 |
language | eng |
recordid | cdi_proquest_miscellaneous_39170115 |
source | RePEc; Business Source Complete; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals |
subjects | Applications Artificial satellites Biology, psychology, social sciences Child health Children Covariance matrices Epidemiology Exact sciences and technology Extrabinomial variation Gambia Geostatistics Insecticide-treated bed nets Linear inference, regression Malaria Mathematics Medical sciences Modeling Musical intervals Parametric inference Parametric models Probability and statistics Public health Satellite data Sciences and techniques of general use Spatial models Spatial statistics Statistical methods Statistics |
title | Childhood malaria in the Gambia: a case-study in model-based geostatistics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Childhood%20malaria%20in%20the%20Gambia:%20a%20case-study%20in%20model-based%20geostatistics&rft.jtitle=Applied%20statistics&rft.au=Diggle,%20Peter&rft.date=2002-01-01&rft.volume=51&rft.issue=4&rft.spage=493&rft.epage=506&rft.pages=493-506&rft.issn=0035-9254&rft.eissn=1467-9876&rft.coden=APSTAG&rft_id=info:doi/10.1111/1467-9876.00283&rft_dat=%3Cjstor_proqu%3E3592624%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=39170115&rft_id=info:pmid/&rft_jstor_id=3592624&rfr_iscdi=true |