Childhood malaria in the Gambia: a case-study in model-based geostatistics

The paper develops a spatial generalized linear mixed model to describe the variation in the prevalence of malaria among a sample of village resident children in the Gambia. The response from each child is a binary indicator of the presence of malarial parasites in a blood sample. The model includes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied statistics 2002-01, Vol.51 (4), p.493-506
Hauptverfasser: Diggle, Peter, Moyeed, Rana, Rowlingson, Barry, Thomson, Madeleine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 506
container_issue 4
container_start_page 493
container_title Applied statistics
container_volume 51
creator Diggle, Peter
Moyeed, Rana
Rowlingson, Barry
Thomson, Madeleine
description The paper develops a spatial generalized linear mixed model to describe the variation in the prevalence of malaria among a sample of village resident children in the Gambia. The response from each child is a binary indicator of the presence of malarial parasites in a blood sample. The model includes terms for the effects of child level covariates (age and bed net use), village level covariates (inclusion or exclusion from the primary health care system and greenness of surrounding vegetation as derived from satellite information) and separate components for residual spatial and non-spatial extrabinomial variation. The results confirm and quantify the progressive increase in prevalence with age, and the protective effects of bed nets. They also show that the extrabinomial variation is spatially structured, suggesting an environmental effect rather than variation in familial susceptibility. Neither inclusion in the primary health care system nor the greenness of the surrounding vegetation appeared to affect the prevalence of malaria. The method of inference was Bayesian using vague priors and a Markov chain Monte Carlo implementation.
doi_str_mv 10.1111/1467-9876.00283
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_39170115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3592624</jstor_id><sourcerecordid>3592624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5123-ae6ef5a67a34e910ab83853bd78aa26a61f85eed277fceda1278edb8a2a86f0f3</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRBILIUzFw65wC2tP-KPcEMLbKnKh2j5uFkTe8J6STaLnS3df49DquWIpfFI894bPz0T8pTRU5bPGauULmuj1Sml3Ih7ZHGc3CcLSoUsay6rh-RRShuaD6PVglws16Hz62HwRQ8dxABF2BbjGosV9E2AlwUUDhKWadz7w4T1g8eubPLMFz9wSCOMIY3BpcfkQQtdwid3_YR8efvmenleXn5cvVu-uiydZFyUgApbCUqDqLBmFBojjBSN1waAK1CsNRLRc61bhx4Y1wZ9Y4CDUS1txQl5Me_dxeHXHtNo-5Acdh1scdgnK2qmKWMyE89mootDShFbu4uhh3iwjNopMzslZKeE7N_MsuJiVkTcoTvSmw42Q0zJ2RsrQLJ8HXLxLMot5Kpy7aZeCyupsuuxz8ue3_mE5KBrI2xdSP88iNpwXU2PVjPvd-jw8D-P9vPV1XL2-myWbdI4xKNMyJorXmW4nOH8OXh7hCH-tEoLLe23Dyt7_f7T-euv37ldiT_wMqzH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>39170115</pqid></control><display><type>article</type><title>Childhood malaria in the Gambia: a case-study in model-based geostatistics</title><source>RePEc</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Diggle, Peter ; Moyeed, Rana ; Rowlingson, Barry ; Thomson, Madeleine</creator><creatorcontrib>Diggle, Peter ; Moyeed, Rana ; Rowlingson, Barry ; Thomson, Madeleine</creatorcontrib><description>The paper develops a spatial generalized linear mixed model to describe the variation in the prevalence of malaria among a sample of village resident children in the Gambia. The response from each child is a binary indicator of the presence of malarial parasites in a blood sample. The model includes terms for the effects of child level covariates (age and bed net use), village level covariates (inclusion or exclusion from the primary health care system and greenness of surrounding vegetation as derived from satellite information) and separate components for residual spatial and non-spatial extrabinomial variation. The results confirm and quantify the progressive increase in prevalence with age, and the protective effects of bed nets. They also show that the extrabinomial variation is spatially structured, suggesting an environmental effect rather than variation in familial susceptibility. Neither inclusion in the primary health care system nor the greenness of the surrounding vegetation appeared to affect the prevalence of malaria. The method of inference was Bayesian using vague priors and a Markov chain Monte Carlo implementation.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/1467-9876.00283</identifier><identifier>CODEN: APSTAG</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishers</publisher><subject>Applications ; Artificial satellites ; Biology, psychology, social sciences ; Child health ; Children ; Covariance matrices ; Epidemiology ; Exact sciences and technology ; Extrabinomial variation ; Gambia ; Geostatistics ; Insecticide-treated bed nets ; Linear inference, regression ; Malaria ; Mathematics ; Medical sciences ; Modeling ; Musical intervals ; Parametric inference ; Parametric models ; Probability and statistics ; Public health ; Satellite data ; Sciences and techniques of general use ; Spatial models ; Spatial statistics ; Statistical methods ; Statistics</subject><ispartof>Applied statistics, 2002-01, Vol.51 (4), p.493-506</ispartof><rights>Copyright 2002 The Royal Statistical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5123-ae6ef5a67a34e910ab83853bd78aa26a61f85eed277fceda1278edb8a2a86f0f3</citedby><cites>FETCH-LOGICAL-c5123-ae6ef5a67a34e910ab83853bd78aa26a61f85eed277fceda1278edb8a2a86f0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3592624$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3592624$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,4008,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13982743$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssc/v_3a51_3ay_3a2002_3ai_3a4_3ap_3a493-506.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Diggle, Peter</creatorcontrib><creatorcontrib>Moyeed, Rana</creatorcontrib><creatorcontrib>Rowlingson, Barry</creatorcontrib><creatorcontrib>Thomson, Madeleine</creatorcontrib><title>Childhood malaria in the Gambia: a case-study in model-based geostatistics</title><title>Applied statistics</title><description>The paper develops a spatial generalized linear mixed model to describe the variation in the prevalence of malaria among a sample of village resident children in the Gambia. The response from each child is a binary indicator of the presence of malarial parasites in a blood sample. The model includes terms for the effects of child level covariates (age and bed net use), village level covariates (inclusion or exclusion from the primary health care system and greenness of surrounding vegetation as derived from satellite information) and separate components for residual spatial and non-spatial extrabinomial variation. The results confirm and quantify the progressive increase in prevalence with age, and the protective effects of bed nets. They also show that the extrabinomial variation is spatially structured, suggesting an environmental effect rather than variation in familial susceptibility. Neither inclusion in the primary health care system nor the greenness of the surrounding vegetation appeared to affect the prevalence of malaria. The method of inference was Bayesian using vague priors and a Markov chain Monte Carlo implementation.</description><subject>Applications</subject><subject>Artificial satellites</subject><subject>Biology, psychology, social sciences</subject><subject>Child health</subject><subject>Children</subject><subject>Covariance matrices</subject><subject>Epidemiology</subject><subject>Exact sciences and technology</subject><subject>Extrabinomial variation</subject><subject>Gambia</subject><subject>Geostatistics</subject><subject>Insecticide-treated bed nets</subject><subject>Linear inference, regression</subject><subject>Malaria</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Modeling</subject><subject>Musical intervals</subject><subject>Parametric inference</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Public health</subject><subject>Satellite data</subject><subject>Sciences and techniques of general use</subject><subject>Spatial models</subject><subject>Spatial statistics</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUU1v1DAQtRBILIUzFw65wC2tP-KPcEMLbKnKh2j5uFkTe8J6STaLnS3df49DquWIpfFI894bPz0T8pTRU5bPGauULmuj1Sml3Ih7ZHGc3CcLSoUsay6rh-RRShuaD6PVglws16Hz62HwRQ8dxABF2BbjGosV9E2AlwUUDhKWadz7w4T1g8eubPLMFz9wSCOMIY3BpcfkQQtdwid3_YR8efvmenleXn5cvVu-uiydZFyUgApbCUqDqLBmFBojjBSN1waAK1CsNRLRc61bhx4Y1wZ9Y4CDUS1txQl5Me_dxeHXHtNo-5Acdh1scdgnK2qmKWMyE89mootDShFbu4uhh3iwjNopMzslZKeE7N_MsuJiVkTcoTvSmw42Q0zJ2RsrQLJ8HXLxLMot5Kpy7aZeCyupsuuxz8ue3_mE5KBrI2xdSP88iNpwXU2PVjPvd-jw8D-P9vPV1XL2-myWbdI4xKNMyJorXmW4nOH8OXh7hCH-tEoLLe23Dyt7_f7T-euv37ldiT_wMqzH</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Diggle, Peter</creator><creator>Moyeed, Rana</creator><creator>Rowlingson, Barry</creator><creator>Thomson, Madeleine</creator><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20020101</creationdate><title>Childhood malaria in the Gambia: a case-study in model-based geostatistics</title><author>Diggle, Peter ; Moyeed, Rana ; Rowlingson, Barry ; Thomson, Madeleine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5123-ae6ef5a67a34e910ab83853bd78aa26a61f85eed277fceda1278edb8a2a86f0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applications</topic><topic>Artificial satellites</topic><topic>Biology, psychology, social sciences</topic><topic>Child health</topic><topic>Children</topic><topic>Covariance matrices</topic><topic>Epidemiology</topic><topic>Exact sciences and technology</topic><topic>Extrabinomial variation</topic><topic>Gambia</topic><topic>Geostatistics</topic><topic>Insecticide-treated bed nets</topic><topic>Linear inference, regression</topic><topic>Malaria</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Modeling</topic><topic>Musical intervals</topic><topic>Parametric inference</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Public health</topic><topic>Satellite data</topic><topic>Sciences and techniques of general use</topic><topic>Spatial models</topic><topic>Spatial statistics</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diggle, Peter</creatorcontrib><creatorcontrib>Moyeed, Rana</creatorcontrib><creatorcontrib>Rowlingson, Barry</creatorcontrib><creatorcontrib>Thomson, Madeleine</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diggle, Peter</au><au>Moyeed, Rana</au><au>Rowlingson, Barry</au><au>Thomson, Madeleine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Childhood malaria in the Gambia: a case-study in model-based geostatistics</atitle><jtitle>Applied statistics</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>51</volume><issue>4</issue><spage>493</spage><epage>506</epage><pages>493-506</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><coden>APSTAG</coden><abstract>The paper develops a spatial generalized linear mixed model to describe the variation in the prevalence of malaria among a sample of village resident children in the Gambia. The response from each child is a binary indicator of the presence of malarial parasites in a blood sample. The model includes terms for the effects of child level covariates (age and bed net use), village level covariates (inclusion or exclusion from the primary health care system and greenness of surrounding vegetation as derived from satellite information) and separate components for residual spatial and non-spatial extrabinomial variation. The results confirm and quantify the progressive increase in prevalence with age, and the protective effects of bed nets. They also show that the extrabinomial variation is spatially structured, suggesting an environmental effect rather than variation in familial susceptibility. Neither inclusion in the primary health care system nor the greenness of the surrounding vegetation appeared to affect the prevalence of malaria. The method of inference was Bayesian using vague priors and a Markov chain Monte Carlo implementation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishers</pub><doi>10.1111/1467-9876.00283</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-9254
ispartof Applied statistics, 2002-01, Vol.51 (4), p.493-506
issn 0035-9254
1467-9876
language eng
recordid cdi_proquest_miscellaneous_39170115
source RePEc; Business Source Complete; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals
subjects Applications
Artificial satellites
Biology, psychology, social sciences
Child health
Children
Covariance matrices
Epidemiology
Exact sciences and technology
Extrabinomial variation
Gambia
Geostatistics
Insecticide-treated bed nets
Linear inference, regression
Malaria
Mathematics
Medical sciences
Modeling
Musical intervals
Parametric inference
Parametric models
Probability and statistics
Public health
Satellite data
Sciences and techniques of general use
Spatial models
Spatial statistics
Statistical methods
Statistics
title Childhood malaria in the Gambia: a case-study in model-based geostatistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Childhood%20malaria%20in%20the%20Gambia:%20a%20case-study%20in%20model-based%20geostatistics&rft.jtitle=Applied%20statistics&rft.au=Diggle,%20Peter&rft.date=2002-01-01&rft.volume=51&rft.issue=4&rft.spage=493&rft.epage=506&rft.pages=493-506&rft.issn=0035-9254&rft.eissn=1467-9876&rft.coden=APSTAG&rft_id=info:doi/10.1111/1467-9876.00283&rft_dat=%3Cjstor_proqu%3E3592624%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=39170115&rft_id=info:pmid/&rft_jstor_id=3592624&rfr_iscdi=true