MINIMUM DISTANCE ESTIMATION OF NONSTATIONARY TIME SERIES MODELS
This paper analyzes the limit distribution of minimum distance (MD) estimators for nonstationary time series models that involve nonlinear parameter restrictions. A rotation for the restricted parameter space is constructed to separate the components of the MD estimator that converge at different ra...
Gespeichert in:
Veröffentlicht in: | Econometric theory 2002-12, Vol.18 (6), p.1385-1407 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper analyzes the limit distribution of minimum distance
(MD) estimators for nonstationary time series models that involve
nonlinear parameter restrictions. A rotation for the restricted
parameter space is constructed to separate the components of
the MD estimator that converge at different rates. We derive
regularity conditions for the restriction function that are
easier to verify than the stochastic equicontinuity conditions
that arise from direct estimation of the restricted parameters.
The sequence of matrices that is used to weigh the discrepancy
between the unrestricted estimates and the restriction function
is allowed to have a stochastic limit. For MD estimators based
on unrestricted estimators with a mixed normal asymptotic
distribution the optimal weight matrix is derived and a
goodness-of-fit test is proposed. Our estimation theory is
illustrated in the context of a permanent-income model and a
present-value model. |
---|---|
ISSN: | 0266-4666 1469-4360 |
DOI: | 10.1017/S0266466602186063 |