MINIMUM DISTANCE ESTIMATION OF NONSTATIONARY TIME SERIES MODELS

This paper analyzes the limit distribution of minimum distance (MD) estimators for nonstationary time series models that involve nonlinear parameter restrictions. A rotation for the restricted parameter space is constructed to separate the components of the MD estimator that converge at different ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2002-12, Vol.18 (6), p.1385-1407
Hauptverfasser: Moon, Hyungsik Roger, Schorfheide, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper analyzes the limit distribution of minimum distance (MD) estimators for nonstationary time series models that involve nonlinear parameter restrictions. A rotation for the restricted parameter space is constructed to separate the components of the MD estimator that converge at different rates. We derive regularity conditions for the restriction function that are easier to verify than the stochastic equicontinuity conditions that arise from direct estimation of the restricted parameters. The sequence of matrices that is used to weigh the discrepancy between the unrestricted estimates and the restriction function is allowed to have a stochastic limit. For MD estimators based on unrestricted estimators with a mixed normal asymptotic distribution the optimal weight matrix is derived and a goodness-of-fit test is proposed. Our estimation theory is illustrated in the context of a permanent-income model and a present-value model.
ISSN:0266-4666
1469-4360
DOI:10.1017/S0266466602186063