Econometric analysis of realized volatility and its use in estimating stochastic volatility models

The availability of intraday data on the prices of speculative assets means that we can use quadratic variation-like measures of activity in financial markets, called realized volatility, to study the stochastic properties of returns. Here, under the assumption of a rather general stochastic volatil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2002-05, Vol.64 (2), p.253-280
Hauptverfasser: Barndorff-Nielsen, Ole E., Shephard, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 2
container_start_page 253
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 64
creator Barndorff-Nielsen, Ole E.
Shephard, Neil
description The availability of intraday data on the prices of speculative assets means that we can use quadratic variation-like measures of activity in financial markets, called realized volatility, to study the stochastic properties of returns. Here, under the assumption of a rather general stochastic volatility model, we derive the moments and the asymptotic distribution of the realized volatility error-the difference between realized volatility and the discretized integrated volatility (which we call actual volatility). These properties can be used to allow us to estimate the parameters of stochastic volatility models without recourse to the use of simulation-intensive methods.
doi_str_mv 10.1111/1467-9868.00336
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_39145012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3088799</jstor_id><sourcerecordid>3088799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6116-5e175f602704ebe6c41e24a90f96acaf0283876a4c0c7d1c2b503e5d4b21cea83</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCVKIUzFw65gLik9Vcc50irUihVESyoEhfLcSbUixMvdraQ_nomTbVwgpHsGfu9sZ6fnWXPKDmkGEdUyKqolVSHhHAuH2T7u52HWHNZF5Wg7FH2OKU1wZAV38-aUxuG0MMYnc3NYPyUXMpDl0cw3t1Cm98Eb0bn3Tgh3uZuTPk2Qe6GHNLoesSGb3kag702uLZ_8_vQgk9Psr3O-ARP7_NB9uXN6eeTt8XFh7N3J68vCisplUUJtCo7SVhFBDQgraDAhKlJV0tjTUeY4qqSRlhiq5Za1pSEQ9mKhlELRvGD7OVy7iaGH1sUp3uXLHhvBgjbpHlNRUkoQ-KrfxKpUoJSji4i9Wih2hhSitDpTcQ7x0lTomfb9Wyynk3Wd7Zjx_nSEWEDdkdvvFmHmFKjbzQ3UuA04WCEMExuLnFs5lxyzRTR12OPh724V2qSNb6LZrAu_dHAZclKQZAnFt5P52H6n0b9abU6XrQ-X9rW-H5x18aJUlVdI1wssEsj_NrBJn7X-HeqUl9dnmn19eMxX51f6ff8NxfLxCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884113033</pqid></control><display><type>article</type><title>Econometric analysis of realized volatility and its use in estimating stochastic volatility models</title><source>RePEc</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Barndorff-Nielsen, Ole E. ; Shephard, Neil</creator><creatorcontrib>Barndorff-Nielsen, Ole E. ; Shephard, Neil</creatorcontrib><description>The availability of intraday data on the prices of speculative assets means that we can use quadratic variation-like measures of activity in financial markets, called realized volatility, to study the stochastic properties of returns. Here, under the assumption of a rather general stochastic volatility model, we derive the moments and the asymptotic distribution of the realized volatility error-the difference between realized volatility and the discretized integrated volatility (which we call actual volatility). These properties can be used to allow us to estimate the parameters of stochastic volatility models without recourse to the use of simulation-intensive methods.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/1467-9868.00336</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science, Ltd</publisher><subject>Applications ; Applied sciences ; Autocorrelation ; Autoregressive moving average ; Availability ; Computer simulation ; Econometric analysis ; Econometrics ; Economic models ; Estimate reliability ; Estimates ; Estimators ; Exact sciences and technology ; Insurance, economics, finance ; Kalman filter ; Leverage ; Linear inference, regression ; Lévy process ; Markets ; Mathematics ; Modeling ; Multivariate analysis ; Operational research and scientific management ; Operational research. Management science ; Parametric models ; Portfolio theory ; Power variation ; Pricing ; Probability and statistics ; Quadratic variation ; Quarticity ; Realized volatility ; Risk premiums ; Sciences and techniques of general use ; Statistical methods ; Statistical variance ; Statistics ; Stochastic models ; Stochastic processes ; Stochastic volatility ; Stochasticity ; Subordination ; Superposition ; Volatility</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2002-05, Vol.64 (2), p.253-280</ispartof><rights>Copyright 2002 The Royal Statistical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6116-5e175f602704ebe6c41e24a90f96acaf0283876a4c0c7d1c2b503e5d4b21cea83</citedby><cites>FETCH-LOGICAL-c6116-5e175f602704ebe6c41e24a90f96acaf0283876a4c0c7d1c2b503e5d4b21cea83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3088799$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3088799$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1416,4006,27923,27924,45573,45574,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13652540$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a64_3ay_3a2002_3ai_3a2_3ap_3a253-280.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Barndorff-Nielsen, Ole E.</creatorcontrib><creatorcontrib>Shephard, Neil</creatorcontrib><title>Econometric analysis of realized volatility and its use in estimating stochastic volatility models</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>The availability of intraday data on the prices of speculative assets means that we can use quadratic variation-like measures of activity in financial markets, called realized volatility, to study the stochastic properties of returns. Here, under the assumption of a rather general stochastic volatility model, we derive the moments and the asymptotic distribution of the realized volatility error-the difference between realized volatility and the discretized integrated volatility (which we call actual volatility). These properties can be used to allow us to estimate the parameters of stochastic volatility models without recourse to the use of simulation-intensive methods.</description><subject>Applications</subject><subject>Applied sciences</subject><subject>Autocorrelation</subject><subject>Autoregressive moving average</subject><subject>Availability</subject><subject>Computer simulation</subject><subject>Econometric analysis</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Estimate reliability</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Insurance, economics, finance</subject><subject>Kalman filter</subject><subject>Leverage</subject><subject>Linear inference, regression</subject><subject>Lévy process</subject><subject>Markets</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Multivariate analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Parametric models</subject><subject>Portfolio theory</subject><subject>Power variation</subject><subject>Pricing</subject><subject>Probability and statistics</subject><subject>Quadratic variation</subject><subject>Quarticity</subject><subject>Realized volatility</subject><subject>Risk premiums</subject><subject>Sciences and techniques of general use</subject><subject>Statistical methods</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Stochastic volatility</subject><subject>Stochasticity</subject><subject>Subordination</subject><subject>Superposition</subject><subject>Volatility</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUk1v1DAQjRCVKIUzFw65gLik9Vcc50irUihVESyoEhfLcSbUixMvdraQ_nomTbVwgpHsGfu9sZ6fnWXPKDmkGEdUyKqolVSHhHAuH2T7u52HWHNZF5Wg7FH2OKU1wZAV38-aUxuG0MMYnc3NYPyUXMpDl0cw3t1Cm98Eb0bn3Tgh3uZuTPk2Qe6GHNLoesSGb3kag702uLZ_8_vQgk9Psr3O-ARP7_NB9uXN6eeTt8XFh7N3J68vCisplUUJtCo7SVhFBDQgraDAhKlJV0tjTUeY4qqSRlhiq5Za1pSEQ9mKhlELRvGD7OVy7iaGH1sUp3uXLHhvBgjbpHlNRUkoQ-KrfxKpUoJSji4i9Wih2hhSitDpTcQ7x0lTomfb9Wyynk3Wd7Zjx_nSEWEDdkdvvFmHmFKjbzQ3UuA04WCEMExuLnFs5lxyzRTR12OPh724V2qSNb6LZrAu_dHAZclKQZAnFt5P52H6n0b9abU6XrQ-X9rW-H5x18aJUlVdI1wssEsj_NrBJn7X-HeqUl9dnmn19eMxX51f6ff8NxfLxCU</recordid><startdate>200205</startdate><enddate>200205</enddate><creator>Barndorff-Nielsen, Ole E.</creator><creator>Shephard, Neil</creator><general>Blackwell Science, Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200205</creationdate><title>Econometric analysis of realized volatility and its use in estimating stochastic volatility models</title><author>Barndorff-Nielsen, Ole E. ; Shephard, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6116-5e175f602704ebe6c41e24a90f96acaf0283876a4c0c7d1c2b503e5d4b21cea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applications</topic><topic>Applied sciences</topic><topic>Autocorrelation</topic><topic>Autoregressive moving average</topic><topic>Availability</topic><topic>Computer simulation</topic><topic>Econometric analysis</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Estimate reliability</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Insurance, economics, finance</topic><topic>Kalman filter</topic><topic>Leverage</topic><topic>Linear inference, regression</topic><topic>Lévy process</topic><topic>Markets</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Multivariate analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Parametric models</topic><topic>Portfolio theory</topic><topic>Power variation</topic><topic>Pricing</topic><topic>Probability and statistics</topic><topic>Quadratic variation</topic><topic>Quarticity</topic><topic>Realized volatility</topic><topic>Risk premiums</topic><topic>Sciences and techniques of general use</topic><topic>Statistical methods</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Stochastic volatility</topic><topic>Stochasticity</topic><topic>Subordination</topic><topic>Superposition</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barndorff-Nielsen, Ole E.</creatorcontrib><creatorcontrib>Shephard, Neil</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barndorff-Nielsen, Ole E.</au><au>Shephard, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Econometric analysis of realized volatility and its use in estimating stochastic volatility models</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2002-05</date><risdate>2002</risdate><volume>64</volume><issue>2</issue><spage>253</spage><epage>280</epage><pages>253-280</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>The availability of intraday data on the prices of speculative assets means that we can use quadratic variation-like measures of activity in financial markets, called realized volatility, to study the stochastic properties of returns. Here, under the assumption of a rather general stochastic volatility model, we derive the moments and the asymptotic distribution of the realized volatility error-the difference between realized volatility and the discretized integrated volatility (which we call actual volatility). These properties can be used to allow us to estimate the parameters of stochastic volatility models without recourse to the use of simulation-intensive methods.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science, Ltd</pub><doi>10.1111/1467-9868.00336</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2002-05, Vol.64 (2), p.253-280
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_miscellaneous_39145012
source RePEc; Business Source Complete; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals
subjects Applications
Applied sciences
Autocorrelation
Autoregressive moving average
Availability
Computer simulation
Econometric analysis
Econometrics
Economic models
Estimate reliability
Estimates
Estimators
Exact sciences and technology
Insurance, economics, finance
Kalman filter
Leverage
Linear inference, regression
Lévy process
Markets
Mathematics
Modeling
Multivariate analysis
Operational research and scientific management
Operational research. Management science
Parametric models
Portfolio theory
Power variation
Pricing
Probability and statistics
Quadratic variation
Quarticity
Realized volatility
Risk premiums
Sciences and techniques of general use
Statistical methods
Statistical variance
Statistics
Stochastic models
Stochastic processes
Stochastic volatility
Stochasticity
Subordination
Superposition
Volatility
title Econometric analysis of realized volatility and its use in estimating stochastic volatility models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Econometric%20analysis%20of%20realized%20volatility%20and%20its%20use%20in%20estimating%20stochastic%20volatility%20models&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Barndorff-Nielsen,%20Ole%20E.&rft.date=2002-05&rft.volume=64&rft.issue=2&rft.spage=253&rft.epage=280&rft.pages=253-280&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/1467-9868.00336&rft_dat=%3Cjstor_proqu%3E3088799%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884113033&rft_id=info:pmid/&rft_jstor_id=3088799&rfr_iscdi=true