ASYMPTOTIC EFFICIENCY OF THE ORDINARY LEAST SQUARES ESTIMATOR FOR REGRESSIONS WITH UNSTABLE REGRESSORS

For regression models with general unstable regressors having characteristic roots on the unit circle and general stationary errors independent of the regressors, sufficient conditions are investigated under which the ordinary least squares estimator (OLSE) is asymptotically efficient in that it has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2002-10, Vol.18 (5), p.1121-1138
Hauptverfasser: SHIN, DONG WAN, OH, MAN SUK
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1138
container_issue 5
container_start_page 1121
container_title Econometric theory
container_volume 18
creator SHIN, DONG WAN
OH, MAN SUK
description For regression models with general unstable regressors having characteristic roots on the unit circle and general stationary errors independent of the regressors, sufficient conditions are investigated under which the ordinary least squares estimator (OLSE) is asymptotically efficient in that it has the same limiting distribution as the generalized least squares estimator (GLSE) under the same normalization. A key condition for the asymptotic efficiency of the OLSE is that one multiplicity of a characteristic root of the regressor process is strictly greater than the multiplicities of the other roots. Under this condition, the covariance matrix Γ of the errors and the regressor matrix X are shown to satisfy a relationship (ΓX = XC + V for some matrix C) for V asymptotically dominated by X, which is analogous to the condition (ΓX = XC for some matrix C) for numerical equivalence of the OLSE and the GLSE.
doi_str_mv 10.1017/S0266466602185057
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_39117880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466602185057</cupid><jstor_id>3533367</jstor_id><sourcerecordid>3533367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-1dec21025258440968bd86442517883322a2f23d7cf0124b6191fcc8e6b05d783</originalsourceid><addsrcrecordid>eNp1kF9r2zAUxc1YYVm7DzDYg9jD3tzpjyXLj54nxwbXXi2FkSfh2PJIltSdlED77SuTroONPVwE93fO4egGwXsErxFE8WcJMWMRYwxixCmk8atggSKWhBFh8HWwmHE48zfBW-d2ECKcxGQRjKlc33xTjSozIPK8zEpRZ2vQ5EAVAjTt17JO2zWoRCoVkLertBUSCKnKm1Q1Lcj9tGLpl7Jsagm-l6oAq1qq9EslfpOmlVfBxdjtnXn3_F4Gq1yorAirZllmaRX2EaHHEA2mxwhiiimPIpgwvhk4iyJMUcw5IRh3eMRkiPvRfyDaMJSgse-5YRtIh5iTy-DTOffeTr9Oxh31Yet6s993d2Y6OU0SNCdBL_z4l3A3neyd76axT4Yxp4kXobOot5Nz1oz63m4PnX3UCOr57Pqfs3vPh7Nn546TfTEQSghhMw7PeOuO5uEFd_an9jSmmi1vdQHpUtVFriuvJ88VusPGbocf5k_R_5d4AmztkgU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212407859</pqid></control><display><type>article</type><title>ASYMPTOTIC EFFICIENCY OF THE ORDINARY LEAST SQUARES ESTIMATOR FOR REGRESSIONS WITH UNSTABLE REGRESSORS</title><source>Jstor Complete Legacy</source><source>Cambridge Journals</source><creator>SHIN, DONG WAN ; OH, MAN SUK</creator><creatorcontrib>SHIN, DONG WAN ; OH, MAN SUK</creatorcontrib><description>For regression models with general unstable regressors having characteristic roots on the unit circle and general stationary errors independent of the regressors, sufficient conditions are investigated under which the ordinary least squares estimator (OLSE) is asymptotically efficient in that it has the same limiting distribution as the generalized least squares estimator (GLSE) under the same normalization. A key condition for the asymptotic efficiency of the OLSE is that one multiplicity of a characteristic root of the regressor process is strictly greater than the multiplicities of the other roots. Under this condition, the covariance matrix Γ of the errors and the regressor matrix X are shown to satisfy a relationship (ΓX = XC + V for some matrix C) for V asymptotically dominated by X, which is analogous to the condition (ΓX = XC for some matrix C) for numerical equivalence of the OLSE and the GLSE.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466602185057</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Covariance ; Covariance matrices ; Determinism ; Econometrics ; Efficiency ; Eigenvalues ; Equivalence ; Error ; Estimation ; Estimators ; Integers ; Least squares ; Least squares method ; Mathematical vectors ; Polynomials ; Regression analysis ; Stationary processes ; Time series ; Trends</subject><ispartof>Econometric theory, 2002-10, Vol.18 (5), p.1121-1138</ispartof><rights>2002 Cambridge University Press</rights><rights>Copyright 2002 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-1dec21025258440968bd86442517883322a2f23d7cf0124b6191fcc8e6b05d783</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3533367$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466602185057/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,799,27901,27902,55603,57992,58225</link.rule.ids></links><search><creatorcontrib>SHIN, DONG WAN</creatorcontrib><creatorcontrib>OH, MAN SUK</creatorcontrib><title>ASYMPTOTIC EFFICIENCY OF THE ORDINARY LEAST SQUARES ESTIMATOR FOR REGRESSIONS WITH UNSTABLE REGRESSORS</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>For regression models with general unstable regressors having characteristic roots on the unit circle and general stationary errors independent of the regressors, sufficient conditions are investigated under which the ordinary least squares estimator (OLSE) is asymptotically efficient in that it has the same limiting distribution as the generalized least squares estimator (GLSE) under the same normalization. A key condition for the asymptotic efficiency of the OLSE is that one multiplicity of a characteristic root of the regressor process is strictly greater than the multiplicities of the other roots. Under this condition, the covariance matrix Γ of the errors and the regressor matrix X are shown to satisfy a relationship (ΓX = XC + V for some matrix C) for V asymptotically dominated by X, which is analogous to the condition (ΓX = XC for some matrix C) for numerical equivalence of the OLSE and the GLSE.</description><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Determinism</subject><subject>Econometrics</subject><subject>Efficiency</subject><subject>Eigenvalues</subject><subject>Equivalence</subject><subject>Error</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Integers</subject><subject>Least squares</subject><subject>Least squares method</subject><subject>Mathematical vectors</subject><subject>Polynomials</subject><subject>Regression analysis</subject><subject>Stationary processes</subject><subject>Time series</subject><subject>Trends</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF9r2zAUxc1YYVm7DzDYg9jD3tzpjyXLj54nxwbXXi2FkSfh2PJIltSdlED77SuTroONPVwE93fO4egGwXsErxFE8WcJMWMRYwxixCmk8atggSKWhBFh8HWwmHE48zfBW-d2ECKcxGQRjKlc33xTjSozIPK8zEpRZ2vQ5EAVAjTt17JO2zWoRCoVkLertBUSCKnKm1Q1Lcj9tGLpl7Jsagm-l6oAq1qq9EslfpOmlVfBxdjtnXn3_F4Gq1yorAirZllmaRX2EaHHEA2mxwhiiimPIpgwvhk4iyJMUcw5IRh3eMRkiPvRfyDaMJSgse-5YRtIh5iTy-DTOffeTr9Oxh31Yet6s993d2Y6OU0SNCdBL_z4l3A3neyd76axT4Yxp4kXobOot5Nz1oz63m4PnX3UCOr57Pqfs3vPh7Nn546TfTEQSghhMw7PeOuO5uEFd_an9jSmmi1vdQHpUtVFriuvJ88VusPGbocf5k_R_5d4AmztkgU</recordid><startdate>200210</startdate><enddate>200210</enddate><creator>SHIN, DONG WAN</creator><creator>OH, MAN SUK</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>200210</creationdate><title>ASYMPTOTIC EFFICIENCY OF THE ORDINARY LEAST SQUARES ESTIMATOR FOR REGRESSIONS WITH UNSTABLE REGRESSORS</title><author>SHIN, DONG WAN ; OH, MAN SUK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-1dec21025258440968bd86442517883322a2f23d7cf0124b6191fcc8e6b05d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Determinism</topic><topic>Econometrics</topic><topic>Efficiency</topic><topic>Eigenvalues</topic><topic>Equivalence</topic><topic>Error</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Integers</topic><topic>Least squares</topic><topic>Least squares method</topic><topic>Mathematical vectors</topic><topic>Polynomials</topic><topic>Regression analysis</topic><topic>Stationary processes</topic><topic>Time series</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHIN, DONG WAN</creatorcontrib><creatorcontrib>OH, MAN SUK</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHIN, DONG WAN</au><au>OH, MAN SUK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASYMPTOTIC EFFICIENCY OF THE ORDINARY LEAST SQUARES ESTIMATOR FOR REGRESSIONS WITH UNSTABLE REGRESSORS</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2002-10</date><risdate>2002</risdate><volume>18</volume><issue>5</issue><spage>1121</spage><epage>1138</epage><pages>1121-1138</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>For regression models with general unstable regressors having characteristic roots on the unit circle and general stationary errors independent of the regressors, sufficient conditions are investigated under which the ordinary least squares estimator (OLSE) is asymptotically efficient in that it has the same limiting distribution as the generalized least squares estimator (GLSE) under the same normalization. A key condition for the asymptotic efficiency of the OLSE is that one multiplicity of a characteristic root of the regressor process is strictly greater than the multiplicities of the other roots. Under this condition, the covariance matrix Γ of the errors and the regressor matrix X are shown to satisfy a relationship (ΓX = XC + V for some matrix C) for V asymptotically dominated by X, which is analogous to the condition (ΓX = XC for some matrix C) for numerical equivalence of the OLSE and the GLSE.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466602185057</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4666
ispartof Econometric theory, 2002-10, Vol.18 (5), p.1121-1138
issn 0266-4666
1469-4360
language eng
recordid cdi_proquest_miscellaneous_39117880
source Jstor Complete Legacy; Cambridge Journals
subjects Covariance
Covariance matrices
Determinism
Econometrics
Efficiency
Eigenvalues
Equivalence
Error
Estimation
Estimators
Integers
Least squares
Least squares method
Mathematical vectors
Polynomials
Regression analysis
Stationary processes
Time series
Trends
title ASYMPTOTIC EFFICIENCY OF THE ORDINARY LEAST SQUARES ESTIMATOR FOR REGRESSIONS WITH UNSTABLE REGRESSORS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASYMPTOTIC%20EFFICIENCY%20OF%20THE%20ORDINARY%20LEAST%20SQUARES%20ESTIMATOR%20FOR%20REGRESSIONS%20WITH%20UNSTABLE%20REGRESSORS&rft.jtitle=Econometric%20theory&rft.au=SHIN,%20DONG%20WAN&rft.date=2002-10&rft.volume=18&rft.issue=5&rft.spage=1121&rft.epage=1138&rft.pages=1121-1138&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466602185057&rft_dat=%3Cjstor_proqu%3E3533367%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212407859&rft_id=info:pmid/&rft_cupid=10_1017_S0266466602185057&rft_jstor_id=3533367&rfr_iscdi=true