GO-GARCH: a multivariate generalized orthogonal GARCH model

Multivariate GARCH specifications are typically determined by means of practical considerations such as the ease of estimation, which often results in a serious loss of generality. A new type of multivariate GARCH model is proposed, in which potentially large covariance matrices can be parameterized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 2002-09, Vol.17 (5), p.549-564
1. Verfasser: van der Weide, Roy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 5
container_start_page 549
container_title Journal of applied econometrics (Chichester, England)
container_volume 17
creator van der Weide, Roy
description Multivariate GARCH specifications are typically determined by means of practical considerations such as the ease of estimation, which often results in a serious loss of generality. A new type of multivariate GARCH model is proposed, in which potentially large covariance matrices can be parameterized with a fairly large degree of freedom while estimation of the parameters remains feasible. The model can be seen as a natural generalization of the O-GARCH model, while it is nested in the more general BEKK model. In order to avoid convergence difficulties of estimation algorithms, we propose to exploit unconditional information first, so that the number of parameters that need to be estimated by means of conditional information is more than halved. Both artificial and empirical examples are included to illustrate the model.
doi_str_mv 10.1002/jae.688
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_39117239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4129271</jstor_id><sourcerecordid>4129271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5048-1d5f1f7f68c0cade4e5a99bb00e70b592a9fc8a80e7a53cb629138bf88ebe6993</originalsourceid><addsrcrecordid>eNp10E9PwjAYBvDGaCKi8Qt4WDzowQz7h66tnghBUIlERD023XiHw0GxHSp-eoczHEw8NW-eX968fRA6JLhBMKbnUwONSMotVCNYqZBQzrdRDUvJQkE53UV73k8xxhHGooYuu4Ow2xq2exeBCWbLvMjejctMAcEE5uBMnn3BOLCueLETOzd58IODmR1Dvo92UpN7OPh96-jxqjNq98L-oHvdbvXDhOOmDMmYpyQVaSQTnJgxNIEbpeIYYxA45ooalSbSyHI0nCVxRBVhMk6lhBgipVgdnVR7F86-LcEXepb5BPLczMEuvWaKEEHZGh7_gVO7dOXVXlMiBWfln0t0WqHEWe8dpHrhsplxK02wXjeoywZ12WApzyr5keWw-o_pm1an0keVnvrCuo1uEqqoIGUcVnHmC_jcxMa96kgwwfXzXVc_PdxGcnTP9ZB9Aweqh8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218753600</pqid></control><display><type>article</type><title>GO-GARCH: a multivariate generalized orthogonal GARCH model</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>van der Weide, Roy</creator><creatorcontrib>van der Weide, Roy</creatorcontrib><description>Multivariate GARCH specifications are typically determined by means of practical considerations such as the ease of estimation, which often results in a serious loss of generality. A new type of multivariate GARCH model is proposed, in which potentially large covariance matrices can be parameterized with a fairly large degree of freedom while estimation of the parameters remains feasible. The model can be seen as a natural generalization of the O-GARCH model, while it is nested in the more general BEKK model. In order to avoid convergence difficulties of estimation algorithms, we propose to exploit unconditional information first, so that the number of parameters that need to be estimated by means of conditional information is more than halved. Both artificial and empirical examples are included to illustrate the model.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.688</identifier><identifier>CODEN: JAECET</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; Correlations ; Covariance matrices ; Degrees of freedom ; Econometrics ; Economic models ; Eigenvalues ; Estimating techniques ; Estimation ; Estimators ; Linear transformations ; Mathematical methods ; Maximum likelihood estimation ; Parametric models ; Random variables ; Rotation ; Statistical variance ; Stochastic models ; Studies</subject><ispartof>Journal of applied econometrics (Chichester, England), 2002-09, Vol.17 (5), p.549-564</ispartof><rights>Copyright 2002 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2002 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Periodicals Inc. Sep/Oct 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5048-1d5f1f7f68c0cade4e5a99bb00e70b592a9fc8a80e7a53cb629138bf88ebe6993</citedby><cites>FETCH-LOGICAL-c5048-1d5f1f7f68c0cade4e5a99bb00e70b592a9fc8a80e7a53cb629138bf88ebe6993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4129271$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4129271$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27902,27903,45552,45553,57994,58227</link.rule.ids></links><search><creatorcontrib>van der Weide, Roy</creatorcontrib><title>GO-GARCH: a multivariate generalized orthogonal GARCH model</title><title>Journal of applied econometrics (Chichester, England)</title><addtitle>J. Appl. Econ</addtitle><description>Multivariate GARCH specifications are typically determined by means of practical considerations such as the ease of estimation, which often results in a serious loss of generality. A new type of multivariate GARCH model is proposed, in which potentially large covariance matrices can be parameterized with a fairly large degree of freedom while estimation of the parameters remains feasible. The model can be seen as a natural generalization of the O-GARCH model, while it is nested in the more general BEKK model. In order to avoid convergence difficulties of estimation algorithms, we propose to exploit unconditional information first, so that the number of parameters that need to be estimated by means of conditional information is more than halved. Both artificial and empirical examples are included to illustrate the model.</description><subject>Algorithms</subject><subject>Correlations</subject><subject>Covariance matrices</subject><subject>Degrees of freedom</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Eigenvalues</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Linear transformations</subject><subject>Mathematical methods</subject><subject>Maximum likelihood estimation</subject><subject>Parametric models</subject><subject>Random variables</subject><subject>Rotation</subject><subject>Statistical variance</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp10E9PwjAYBvDGaCKi8Qt4WDzowQz7h66tnghBUIlERD023XiHw0GxHSp-eoczHEw8NW-eX968fRA6JLhBMKbnUwONSMotVCNYqZBQzrdRDUvJQkE53UV73k8xxhHGooYuu4Ow2xq2exeBCWbLvMjejctMAcEE5uBMnn3BOLCueLETOzd58IODmR1Dvo92UpN7OPh96-jxqjNq98L-oHvdbvXDhOOmDMmYpyQVaSQTnJgxNIEbpeIYYxA45ooalSbSyHI0nCVxRBVhMk6lhBgipVgdnVR7F86-LcEXepb5BPLczMEuvWaKEEHZGh7_gVO7dOXVXlMiBWfln0t0WqHEWe8dpHrhsplxK02wXjeoywZ12WApzyr5keWw-o_pm1an0keVnvrCuo1uEqqoIGUcVnHmC_jcxMa96kgwwfXzXVc_PdxGcnTP9ZB9Aweqh8k</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>van der Weide, Roy</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley &amp; Sons</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>200209</creationdate><title>GO-GARCH: a multivariate generalized orthogonal GARCH model</title><author>van der Weide, Roy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5048-1d5f1f7f68c0cade4e5a99bb00e70b592a9fc8a80e7a53cb629138bf88ebe6993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Correlations</topic><topic>Covariance matrices</topic><topic>Degrees of freedom</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Eigenvalues</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Linear transformations</topic><topic>Mathematical methods</topic><topic>Maximum likelihood estimation</topic><topic>Parametric models</topic><topic>Random variables</topic><topic>Rotation</topic><topic>Statistical variance</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Weide, Roy</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Weide, Roy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GO-GARCH: a multivariate generalized orthogonal GARCH model</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><addtitle>J. Appl. Econ</addtitle><date>2002-09</date><risdate>2002</risdate><volume>17</volume><issue>5</issue><spage>549</spage><epage>564</epage><pages>549-564</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><coden>JAECET</coden><abstract>Multivariate GARCH specifications are typically determined by means of practical considerations such as the ease of estimation, which often results in a serious loss of generality. A new type of multivariate GARCH model is proposed, in which potentially large covariance matrices can be parameterized with a fairly large degree of freedom while estimation of the parameters remains feasible. The model can be seen as a natural generalization of the O-GARCH model, while it is nested in the more general BEKK model. In order to avoid convergence difficulties of estimation algorithms, we propose to exploit unconditional information first, so that the number of parameters that need to be estimated by means of conditional information is more than halved. Both artificial and empirical examples are included to illustrate the model.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jae.688</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2002-09, Vol.17 (5), p.549-564
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_miscellaneous_39117239
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Correlations
Covariance matrices
Degrees of freedom
Econometrics
Economic models
Eigenvalues
Estimating techniques
Estimation
Estimators
Linear transformations
Mathematical methods
Maximum likelihood estimation
Parametric models
Random variables
Rotation
Statistical variance
Stochastic models
Studies
title GO-GARCH: a multivariate generalized orthogonal GARCH model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GO-GARCH:%20a%20multivariate%20generalized%20orthogonal%20GARCH%20model&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=van%20der%20Weide,%20Roy&rft.date=2002-09&rft.volume=17&rft.issue=5&rft.spage=549&rft.epage=564&rft.pages=549-564&rft.issn=0883-7252&rft.eissn=1099-1255&rft.coden=JAECET&rft_id=info:doi/10.1002/jae.688&rft_dat=%3Cjstor_proqu%3E4129271%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218753600&rft_id=info:pmid/&rft_jstor_id=4129271&rfr_iscdi=true