ON VARIABLE SELECTION IN LINEAR REGRESSION

Shibata (1981, Biometrika 68, 45–54) considers data-generating mechanisms belonging to a certain class of linear regressions with errors that are independent and identically normally distributed. He compares the variable selection criteria AIC (Akaike information criterion) and BIC (Bayesian informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2002-08, Vol.18 (4), p.913-925
1. Verfasser: Kabaila, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 925
container_issue 4
container_start_page 913
container_title Econometric theory
container_volume 18
creator Kabaila, Paul
description Shibata (1981, Biometrika 68, 45–54) considers data-generating mechanisms belonging to a certain class of linear regressions with errors that are independent and identically normally distributed. He compares the variable selection criteria AIC (Akaike information criterion) and BIC (Bayesian information criterion) using the following type of comparison. For each fixed possible data–generating mechanism, these criteria are compared as the data length increases. The results of this comparison have been interpreted as meaning that, in the context of the data-generating mechanisms considered by Shibata, AIC is better than BIC for large data lengths. Shibata's comparison is pointwise in the space of data–generating mechanisms (as the data length increases). Such comparisons are potentially misleading. We consider a simple class of data-generating mechanisms satisfying Shibata's assumptions and carry out a different type of comparison. For each fixed data length (possibly large) we compare the variable selection criteria for every possible data-generating mechanism in this class. According to this comparison, for this class of data-generating mechanisms no matter how large the data length AIC is not better than BIC.
doi_str_mv 10.1017/S0266466602184052
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_39092741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466602184052</cupid><jstor_id>3533418</jstor_id><sourcerecordid>3533418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-2364086e5c778cee3f8c12b75cc0286c2d97a23d5a0f60c600ea00082a4dcdea3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gOChePAgRGc_spsca4k1mKaY1npctputpLZN3W1B_71bUhQUTwPzvO_wMAidY7jBgMXtCAjnjHMOBEcMQnKAWpjxOGCUwyFq7XCw48foxLk5ACaxoC10Pcw7k26Rdu-ypDNKsqQ3Tv0qzTtZmifdolMk_SIZjfzyFB3N1MKZs_1so-f7ZNx7CLJhP-11s0D7-5uAUM4g4ibUQkTaGDqLNCZTEWoNJOKalLFQhJahghkHzQGMAoCIKFbq0ijaRlfN3bWt37fGbeSyctosFmpl6q2TNIaYCIZ98PJXcF5v7cq7SYK9BoQx-BBuQtrWzlkzk2tbLZX9lBjk7nXyz-t856LpzN2mtt8FGlLKcORx0ODKbczHN1b2TXJBRSh5_0kOspdJPmCPMvd5uldQy6mtylfzI_q_xBe-lIJa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212360590</pqid></control><display><type>article</type><title>ON VARIABLE SELECTION IN LINEAR REGRESSION</title><source>Jstor Complete Legacy</source><source>Cambridge Journals</source><creator>Kabaila, Paul</creator><creatorcontrib>Kabaila, Paul</creatorcontrib><description>Shibata (1981, Biometrika 68, 45–54) considers data-generating mechanisms belonging to a certain class of linear regressions with errors that are independent and identically normally distributed. He compares the variable selection criteria AIC (Akaike information criterion) and BIC (Bayesian information criterion) using the following type of comparison. For each fixed possible data–generating mechanism, these criteria are compared as the data length increases. The results of this comparison have been interpreted as meaning that, in the context of the data-generating mechanisms considered by Shibata, AIC is better than BIC for large data lengths. Shibata's comparison is pointwise in the space of data–generating mechanisms (as the data length increases). Such comparisons are potentially misleading. We consider a simple class of data-generating mechanisms satisfying Shibata's assumptions and carry out a different type of comparison. For each fixed data length (possibly large) we compare the variable selection criteria for every possible data-generating mechanism in this class. According to this comparison, for this class of data-generating mechanisms no matter how large the data length AIC is not better than BIC.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466602184052</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Econometrics ; Economic models ; Efficiency metrics ; Error ; Estimation ; Estimators ; Integers ; Least squares method ; Linear models ; Linear regression ; Mathematical vectors ; Regression analysis ; Space mechanics ; Statistical methods ; Statistics</subject><ispartof>Econometric theory, 2002-08, Vol.18 (4), p.913-925</ispartof><rights>2002 Cambridge University Press</rights><rights>Copyright 2002 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-2364086e5c778cee3f8c12b75cc0286c2d97a23d5a0f60c600ea00082a4dcdea3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3533418$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466602184052/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,799,27901,27902,55603,57992,58225</link.rule.ids></links><search><creatorcontrib>Kabaila, Paul</creatorcontrib><title>ON VARIABLE SELECTION IN LINEAR REGRESSION</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>Shibata (1981, Biometrika 68, 45–54) considers data-generating mechanisms belonging to a certain class of linear regressions with errors that are independent and identically normally distributed. He compares the variable selection criteria AIC (Akaike information criterion) and BIC (Bayesian information criterion) using the following type of comparison. For each fixed possible data–generating mechanism, these criteria are compared as the data length increases. The results of this comparison have been interpreted as meaning that, in the context of the data-generating mechanisms considered by Shibata, AIC is better than BIC for large data lengths. Shibata's comparison is pointwise in the space of data–generating mechanisms (as the data length increases). Such comparisons are potentially misleading. We consider a simple class of data-generating mechanisms satisfying Shibata's assumptions and carry out a different type of comparison. For each fixed data length (possibly large) we compare the variable selection criteria for every possible data-generating mechanism in this class. According to this comparison, for this class of data-generating mechanisms no matter how large the data length AIC is not better than BIC.</description><subject>Econometrics</subject><subject>Economic models</subject><subject>Efficiency metrics</subject><subject>Error</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Integers</subject><subject>Least squares method</subject><subject>Linear models</subject><subject>Linear regression</subject><subject>Mathematical vectors</subject><subject>Regression analysis</subject><subject>Space mechanics</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gOChePAgRGc_spsca4k1mKaY1npctputpLZN3W1B_71bUhQUTwPzvO_wMAidY7jBgMXtCAjnjHMOBEcMQnKAWpjxOGCUwyFq7XCw48foxLk5ACaxoC10Pcw7k26Rdu-ypDNKsqQ3Tv0qzTtZmifdolMk_SIZjfzyFB3N1MKZs_1so-f7ZNx7CLJhP-11s0D7-5uAUM4g4ibUQkTaGDqLNCZTEWoNJOKalLFQhJahghkHzQGMAoCIKFbq0ijaRlfN3bWt37fGbeSyctosFmpl6q2TNIaYCIZ98PJXcF5v7cq7SYK9BoQx-BBuQtrWzlkzk2tbLZX9lBjk7nXyz-t856LpzN2mtt8FGlLKcORx0ODKbczHN1b2TXJBRSh5_0kOspdJPmCPMvd5uldQy6mtylfzI_q_xBe-lIJa</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Kabaila, Paul</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20020801</creationdate><title>ON VARIABLE SELECTION IN LINEAR REGRESSION</title><author>Kabaila, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-2364086e5c778cee3f8c12b75cc0286c2d97a23d5a0f60c600ea00082a4dcdea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Econometrics</topic><topic>Economic models</topic><topic>Efficiency metrics</topic><topic>Error</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Integers</topic><topic>Least squares method</topic><topic>Linear models</topic><topic>Linear regression</topic><topic>Mathematical vectors</topic><topic>Regression analysis</topic><topic>Space mechanics</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabaila, Paul</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabaila, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON VARIABLE SELECTION IN LINEAR REGRESSION</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2002-08-01</date><risdate>2002</risdate><volume>18</volume><issue>4</issue><spage>913</spage><epage>925</epage><pages>913-925</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>Shibata (1981, Biometrika 68, 45–54) considers data-generating mechanisms belonging to a certain class of linear regressions with errors that are independent and identically normally distributed. He compares the variable selection criteria AIC (Akaike information criterion) and BIC (Bayesian information criterion) using the following type of comparison. For each fixed possible data–generating mechanism, these criteria are compared as the data length increases. The results of this comparison have been interpreted as meaning that, in the context of the data-generating mechanisms considered by Shibata, AIC is better than BIC for large data lengths. Shibata's comparison is pointwise in the space of data–generating mechanisms (as the data length increases). Such comparisons are potentially misleading. We consider a simple class of data-generating mechanisms satisfying Shibata's assumptions and carry out a different type of comparison. For each fixed data length (possibly large) we compare the variable selection criteria for every possible data-generating mechanism in this class. According to this comparison, for this class of data-generating mechanisms no matter how large the data length AIC is not better than BIC.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466602184052</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4666
ispartof Econometric theory, 2002-08, Vol.18 (4), p.913-925
issn 0266-4666
1469-4360
language eng
recordid cdi_proquest_miscellaneous_39092741
source Jstor Complete Legacy; Cambridge Journals
subjects Econometrics
Economic models
Efficiency metrics
Error
Estimation
Estimators
Integers
Least squares method
Linear models
Linear regression
Mathematical vectors
Regression analysis
Space mechanics
Statistical methods
Statistics
title ON VARIABLE SELECTION IN LINEAR REGRESSION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20VARIABLE%20SELECTION%20IN%20LINEAR%20REGRESSION&rft.jtitle=Econometric%20theory&rft.au=Kabaila,%20Paul&rft.date=2002-08-01&rft.volume=18&rft.issue=4&rft.spage=913&rft.epage=925&rft.pages=913-925&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466602184052&rft_dat=%3Cjstor_proqu%3E3533418%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212360590&rft_id=info:pmid/&rft_cupid=10_1017_S0266466602184052&rft_jstor_id=3533418&rfr_iscdi=true