ON VARIABLE SELECTION IN LINEAR REGRESSION
Shibata (1981, Biometrika 68, 45–54) considers data-generating mechanisms belonging to a certain class of linear regressions with errors that are independent and identically normally distributed. He compares the variable selection criteria AIC (Akaike information criterion) and BIC (Bayesian informa...
Gespeichert in:
Veröffentlicht in: | Econometric theory 2002-08, Vol.18 (4), p.913-925 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 925 |
---|---|
container_issue | 4 |
container_start_page | 913 |
container_title | Econometric theory |
container_volume | 18 |
creator | Kabaila, Paul |
description | Shibata (1981, Biometrika 68, 45–54) considers
data-generating mechanisms belonging to a certain class of linear
regressions with errors that are independent and identically
normally distributed. He compares the variable selection criteria
AIC (Akaike information criterion) and BIC (Bayesian information
criterion) using the following type of comparison. For each
fixed possible data–generating mechanism, these criteria
are compared as the data length increases. The results of this
comparison have been interpreted as meaning that, in the context
of the data-generating mechanisms considered by Shibata, AIC
is better than BIC for large data lengths. Shibata's
comparison is pointwise in the space of data–generating
mechanisms (as the data length increases). Such comparisons
are potentially misleading. We consider a simple class of
data-generating mechanisms satisfying Shibata's assumptions
and carry out a different type of comparison. For each fixed
data length (possibly large) we compare the variable selection
criteria for every possible data-generating mechanism in this
class. According to this comparison, for this class of
data-generating mechanisms no matter how large the data length
AIC is not better than BIC. |
doi_str_mv | 10.1017/S0266466602184052 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_39092741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466602184052</cupid><jstor_id>3533418</jstor_id><sourcerecordid>3533418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-2364086e5c778cee3f8c12b75cc0286c2d97a23d5a0f60c600ea00082a4dcdea3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gOChePAgRGc_spsca4k1mKaY1npctputpLZN3W1B_71bUhQUTwPzvO_wMAidY7jBgMXtCAjnjHMOBEcMQnKAWpjxOGCUwyFq7XCw48foxLk5ACaxoC10Pcw7k26Rdu-ypDNKsqQ3Tv0qzTtZmifdolMk_SIZjfzyFB3N1MKZs_1so-f7ZNx7CLJhP-11s0D7-5uAUM4g4ibUQkTaGDqLNCZTEWoNJOKalLFQhJahghkHzQGMAoCIKFbq0ijaRlfN3bWt37fGbeSyctosFmpl6q2TNIaYCIZ98PJXcF5v7cq7SYK9BoQx-BBuQtrWzlkzk2tbLZX9lBjk7nXyz-t856LpzN2mtt8FGlLKcORx0ODKbczHN1b2TXJBRSh5_0kOspdJPmCPMvd5uldQy6mtylfzI_q_xBe-lIJa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212360590</pqid></control><display><type>article</type><title>ON VARIABLE SELECTION IN LINEAR REGRESSION</title><source>Jstor Complete Legacy</source><source>Cambridge Journals</source><creator>Kabaila, Paul</creator><creatorcontrib>Kabaila, Paul</creatorcontrib><description>Shibata (1981, Biometrika 68, 45–54) considers
data-generating mechanisms belonging to a certain class of linear
regressions with errors that are independent and identically
normally distributed. He compares the variable selection criteria
AIC (Akaike information criterion) and BIC (Bayesian information
criterion) using the following type of comparison. For each
fixed possible data–generating mechanism, these criteria
are compared as the data length increases. The results of this
comparison have been interpreted as meaning that, in the context
of the data-generating mechanisms considered by Shibata, AIC
is better than BIC for large data lengths. Shibata's
comparison is pointwise in the space of data–generating
mechanisms (as the data length increases). Such comparisons
are potentially misleading. We consider a simple class of
data-generating mechanisms satisfying Shibata's assumptions
and carry out a different type of comparison. For each fixed
data length (possibly large) we compare the variable selection
criteria for every possible data-generating mechanism in this
class. According to this comparison, for this class of
data-generating mechanisms no matter how large the data length
AIC is not better than BIC.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466602184052</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Econometrics ; Economic models ; Efficiency metrics ; Error ; Estimation ; Estimators ; Integers ; Least squares method ; Linear models ; Linear regression ; Mathematical vectors ; Regression analysis ; Space mechanics ; Statistical methods ; Statistics</subject><ispartof>Econometric theory, 2002-08, Vol.18 (4), p.913-925</ispartof><rights>2002 Cambridge University Press</rights><rights>Copyright 2002 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-2364086e5c778cee3f8c12b75cc0286c2d97a23d5a0f60c600ea00082a4dcdea3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3533418$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466602184052/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,799,27901,27902,55603,57992,58225</link.rule.ids></links><search><creatorcontrib>Kabaila, Paul</creatorcontrib><title>ON VARIABLE SELECTION IN LINEAR REGRESSION</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>Shibata (1981, Biometrika 68, 45–54) considers
data-generating mechanisms belonging to a certain class of linear
regressions with errors that are independent and identically
normally distributed. He compares the variable selection criteria
AIC (Akaike information criterion) and BIC (Bayesian information
criterion) using the following type of comparison. For each
fixed possible data–generating mechanism, these criteria
are compared as the data length increases. The results of this
comparison have been interpreted as meaning that, in the context
of the data-generating mechanisms considered by Shibata, AIC
is better than BIC for large data lengths. Shibata's
comparison is pointwise in the space of data–generating
mechanisms (as the data length increases). Such comparisons
are potentially misleading. We consider a simple class of
data-generating mechanisms satisfying Shibata's assumptions
and carry out a different type of comparison. For each fixed
data length (possibly large) we compare the variable selection
criteria for every possible data-generating mechanism in this
class. According to this comparison, for this class of
data-generating mechanisms no matter how large the data length
AIC is not better than BIC.</description><subject>Econometrics</subject><subject>Economic models</subject><subject>Efficiency metrics</subject><subject>Error</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Integers</subject><subject>Least squares method</subject><subject>Linear models</subject><subject>Linear regression</subject><subject>Mathematical vectors</subject><subject>Regression analysis</subject><subject>Space mechanics</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gOChePAgRGc_spsca4k1mKaY1npctputpLZN3W1B_71bUhQUTwPzvO_wMAidY7jBgMXtCAjnjHMOBEcMQnKAWpjxOGCUwyFq7XCw48foxLk5ACaxoC10Pcw7k26Rdu-ypDNKsqQ3Tv0qzTtZmifdolMk_SIZjfzyFB3N1MKZs_1so-f7ZNx7CLJhP-11s0D7-5uAUM4g4ibUQkTaGDqLNCZTEWoNJOKalLFQhJahghkHzQGMAoCIKFbq0ijaRlfN3bWt37fGbeSyctosFmpl6q2TNIaYCIZ98PJXcF5v7cq7SYK9BoQx-BBuQtrWzlkzk2tbLZX9lBjk7nXyz-t856LpzN2mtt8FGlLKcORx0ODKbczHN1b2TXJBRSh5_0kOspdJPmCPMvd5uldQy6mtylfzI_q_xBe-lIJa</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Kabaila, Paul</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20020801</creationdate><title>ON VARIABLE SELECTION IN LINEAR REGRESSION</title><author>Kabaila, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-2364086e5c778cee3f8c12b75cc0286c2d97a23d5a0f60c600ea00082a4dcdea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Econometrics</topic><topic>Economic models</topic><topic>Efficiency metrics</topic><topic>Error</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Integers</topic><topic>Least squares method</topic><topic>Linear models</topic><topic>Linear regression</topic><topic>Mathematical vectors</topic><topic>Regression analysis</topic><topic>Space mechanics</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabaila, Paul</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabaila, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON VARIABLE SELECTION IN LINEAR REGRESSION</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2002-08-01</date><risdate>2002</risdate><volume>18</volume><issue>4</issue><spage>913</spage><epage>925</epage><pages>913-925</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>Shibata (1981, Biometrika 68, 45–54) considers
data-generating mechanisms belonging to a certain class of linear
regressions with errors that are independent and identically
normally distributed. He compares the variable selection criteria
AIC (Akaike information criterion) and BIC (Bayesian information
criterion) using the following type of comparison. For each
fixed possible data–generating mechanism, these criteria
are compared as the data length increases. The results of this
comparison have been interpreted as meaning that, in the context
of the data-generating mechanisms considered by Shibata, AIC
is better than BIC for large data lengths. Shibata's
comparison is pointwise in the space of data–generating
mechanisms (as the data length increases). Such comparisons
are potentially misleading. We consider a simple class of
data-generating mechanisms satisfying Shibata's assumptions
and carry out a different type of comparison. For each fixed
data length (possibly large) we compare the variable selection
criteria for every possible data-generating mechanism in this
class. According to this comparison, for this class of
data-generating mechanisms no matter how large the data length
AIC is not better than BIC.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466602184052</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4666 |
ispartof | Econometric theory, 2002-08, Vol.18 (4), p.913-925 |
issn | 0266-4666 1469-4360 |
language | eng |
recordid | cdi_proquest_miscellaneous_39092741 |
source | Jstor Complete Legacy; Cambridge Journals |
subjects | Econometrics Economic models Efficiency metrics Error Estimation Estimators Integers Least squares method Linear models Linear regression Mathematical vectors Regression analysis Space mechanics Statistical methods Statistics |
title | ON VARIABLE SELECTION IN LINEAR REGRESSION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20VARIABLE%20SELECTION%20IN%20LINEAR%20REGRESSION&rft.jtitle=Econometric%20theory&rft.au=Kabaila,%20Paul&rft.date=2002-08-01&rft.volume=18&rft.issue=4&rft.spage=913&rft.epage=925&rft.pages=913-925&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466602184052&rft_dat=%3Cjstor_proqu%3E3533418%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212360590&rft_id=info:pmid/&rft_cupid=10_1017_S0266466602184052&rft_jstor_id=3533418&rfr_iscdi=true |