The compound Poisson approximation for a portfolio of dependent risks
A well-known approximation of the aggregate claims distribution in the individual risk theory model with mutually independent individual risks is the compound Poisson approximation. In this paper, we relax the assumption of independency and show that the same compound Poisson approximation will stil...
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 1996-05, Vol.18 (1), p.81-85 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | Insurance, mathematics & economics |
container_volume | 18 |
creator | Goovaerts, M.J. Dhaene, J. |
description | A well-known approximation of the aggregate claims distribution in the individual risk theory model with mutually independent individual risks is the compound Poisson approximation. In this paper, we relax the assumption of independency and show that the same compound Poisson approximation will still perform well under certain circumstances. |
doi_str_mv | 10.1016/0167-6687(95)00033-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38998833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016766879500033X</els_id><sourcerecordid>38998833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-fa8e1d5ee9d6d37384a04c2b22fa72d4ead0f8a43c3ac5a570c1c46091f18bc83</originalsourceid><addsrcrecordid>eNp9kE1L9TAQhYMoeP34By6KC_FdVJOmaZONIOIXCLpQcDfEZILR26Ymrbz-e1OvuHDhYjITOOcw8xCyx-gRo6w5ztWWTSPbQyX-UUo5Lx_XyILJlpdCCbVOFj-STbKV0ksWMdW0C3J-_4yFCd0Qpt4Wd8GnFPpCD0MM_32nR59_LsRCF0OIowtLH4rgCosD9hb7sYg-vaYdsuH0MuHud98mDxfn92dX5c3t5fXZ6U1pBK3H0mmJzApEZRvLWy5rTWtTPVWV021la9SWOqlrbrg2QouWGmbqhirmmHwykm-Tg1VuXu9twjRC55PB5VL3GKYEXColJedZuP9L-BKm2OfdoKKSZQ50FtUrkYkhpYgOhphvjh_AKMxgYaYGMzVQAr7AwmO2Xa1sMUMwPx5E9H2aOg3vwDWT-fmYB6Wa3Pw85hpySQZSwPPY5aiTVRRmaO8eIyTjsTdofUQzgg3-710-ARi7mM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208168703</pqid></control><display><type>article</type><title>The compound Poisson approximation for a portfolio of dependent risks</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Goovaerts, M.J. ; Dhaene, J.</creator><creatorcontrib>Goovaerts, M.J. ; Dhaene, J.</creatorcontrib><description>A well-known approximation of the aggregate claims distribution in the individual risk theory model with mutually independent individual risks is the compound Poisson approximation. In this paper, we relax the assumption of independency and show that the same compound Poisson approximation will still perform well under certain circumstances.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/0167-6687(95)00033-X</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation ; Compound Poisson approximation ; Dependent risks ; Economic models ; Individual model ; Insurance claims ; Mathematical analysis ; Portfolio management ; Risk ; Risk management ; Studies</subject><ispartof>Insurance, mathematics & economics, 1996-05, Vol.18 (1), p.81-85</ispartof><rights>1996</rights><rights>Copyright Elsevier Sequoia S.A. May 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-fa8e1d5ee9d6d37384a04c2b22fa72d4ead0f8a43c3ac5a570c1c46091f18bc83</citedby><cites>FETCH-LOGICAL-c504t-fa8e1d5ee9d6d37384a04c2b22fa72d4ead0f8a43c3ac5a570c1c46091f18bc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0167-6687(95)00033-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,3994,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a18_3ay_3a1996_3ai_3a1_3ap_3a81-85.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Goovaerts, M.J.</creatorcontrib><creatorcontrib>Dhaene, J.</creatorcontrib><title>The compound Poisson approximation for a portfolio of dependent risks</title><title>Insurance, mathematics & economics</title><description>A well-known approximation of the aggregate claims distribution in the individual risk theory model with mutually independent individual risks is the compound Poisson approximation. In this paper, we relax the assumption of independency and show that the same compound Poisson approximation will still perform well under certain circumstances.</description><subject>Approximation</subject><subject>Compound Poisson approximation</subject><subject>Dependent risks</subject><subject>Economic models</subject><subject>Individual model</subject><subject>Insurance claims</subject><subject>Mathematical analysis</subject><subject>Portfolio management</subject><subject>Risk</subject><subject>Risk management</subject><subject>Studies</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kE1L9TAQhYMoeP34By6KC_FdVJOmaZONIOIXCLpQcDfEZILR26Ymrbz-e1OvuHDhYjITOOcw8xCyx-gRo6w5ztWWTSPbQyX-UUo5Lx_XyILJlpdCCbVOFj-STbKV0ksWMdW0C3J-_4yFCd0Qpt4Wd8GnFPpCD0MM_32nR59_LsRCF0OIowtLH4rgCosD9hb7sYg-vaYdsuH0MuHud98mDxfn92dX5c3t5fXZ6U1pBK3H0mmJzApEZRvLWy5rTWtTPVWV021la9SWOqlrbrg2QouWGmbqhirmmHwykm-Tg1VuXu9twjRC55PB5VL3GKYEXColJedZuP9L-BKm2OfdoKKSZQ50FtUrkYkhpYgOhphvjh_AKMxgYaYGMzVQAr7AwmO2Xa1sMUMwPx5E9H2aOg3vwDWT-fmYB6Wa3Pw85hpySQZSwPPY5aiTVRRmaO8eIyTjsTdofUQzgg3-710-ARi7mM0</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Goovaerts, M.J.</creator><creator>Dhaene, J.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>19960501</creationdate><title>The compound Poisson approximation for a portfolio of dependent risks</title><author>Goovaerts, M.J. ; Dhaene, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-fa8e1d5ee9d6d37384a04c2b22fa72d4ead0f8a43c3ac5a570c1c46091f18bc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Approximation</topic><topic>Compound Poisson approximation</topic><topic>Dependent risks</topic><topic>Economic models</topic><topic>Individual model</topic><topic>Insurance claims</topic><topic>Mathematical analysis</topic><topic>Portfolio management</topic><topic>Risk</topic><topic>Risk management</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goovaerts, M.J.</creatorcontrib><creatorcontrib>Dhaene, J.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goovaerts, M.J.</au><au>Dhaene, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The compound Poisson approximation for a portfolio of dependent risks</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>1996-05-01</date><risdate>1996</risdate><volume>18</volume><issue>1</issue><spage>81</spage><epage>85</epage><pages>81-85</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>A well-known approximation of the aggregate claims distribution in the individual risk theory model with mutually independent individual risks is the compound Poisson approximation. In this paper, we relax the assumption of independency and show that the same compound Poisson approximation will still perform well under certain circumstances.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0167-6687(95)00033-X</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 1996-05, Vol.18 (1), p.81-85 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_miscellaneous_38998833 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Approximation Compound Poisson approximation Dependent risks Economic models Individual model Insurance claims Mathematical analysis Portfolio management Risk Risk management Studies |
title | The compound Poisson approximation for a portfolio of dependent risks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20compound%20Poisson%20approximation%20for%20a%20portfolio%20of%20dependent%20risks&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Goovaerts,%20M.J.&rft.date=1996-05-01&rft.volume=18&rft.issue=1&rft.spage=81&rft.epage=85&rft.pages=81-85&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/0167-6687(95)00033-X&rft_dat=%3Cproquest_cross%3E38998833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208168703&rft_id=info:pmid/&rft_els_id=016766879500033X&rfr_iscdi=true |