Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models
We investigate the prediction of italian industrial production and first specify a model based on electricity consumption showing that the cubic trend in such a model mostly captures the evolution over time of the electricity coefficient, which can be well approximated by a smooth transition model,...
Gespeichert in:
Veröffentlicht in: | Journal of forecasting 2000-09, Vol.19 (5), p.419-440 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 5 |
container_start_page | 419 |
container_title | Journal of forecasting |
container_volume | 19 |
creator | Marchetti, Domenico J. Parigi, Giuseppe |
description | We investigate the prediction of italian industrial production and first specify a model based on electricity consumption showing that the cubic trend in such a model mostly captures the evolution over time of the electricity coefficient, which can be well approximated by a smooth transition model, with no gains in predictive power. We also analyse the performance of models based on data of two different business surveys. According to the standard statistics of forecasting accuracy, the linear energy‐based model is not outperformed by any other model, nor by a combination of forecasts. However, a more comprehensive set of evaluation criteria sheds light on the relative merit of each individual model. A modelling strategy which makes full use of all information available is proposed. Copyright © 2000 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/1099-131X(200009)19:5<419::AID-FOR749>3.0.CO;2-J |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38951130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38951130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3449-80c8f86a1bb74900d21298410074b5f7471d5bf30fefdf83161bb6b574681b3</originalsourceid><addsrcrecordid>eNqVkcFu1DAQhiMEEkvhHSwOCCSy2LET2wtCqpZu2VXFIkCU28hJbHBJnMVOWvICPDeOUvaAuOCDrZn559OM_yQRBC8JxtkLgqVMCSVfnmY4HvmMyFX-isV7dbp9k272HziTr-kSL9f7l1m6u5Msji13kwXOOE-LQtL7yYMQriKBC5Itkl9nTvuvI6o6F4b20NvOPUdh8Nd6RLXqFVKuRv03jQ5e17aa6qgzyLp6CL23qomFrh7mgnVo26tmXCEVge1BeRtiekLEsLRO_emvrTHaa9ejtqt1Ex4m94xqgn50-54kHzdnn9Zv04v9-XZ9epFWlDGZClwJIwpFyjJui3GdkUwKFj-IszI3nHFS56Wh2GhTG0FJEZVFmXNWCFLSk-TJTI0z_xh06KG1odJNo5zuhgBUyJwQiqPw8V_Cq27wLk4GGZFEEM5ZFL2fRZXvQvDawMHbVvkRCIbJM5gMgMkAmD0DIiGH6BlA9Axmz4AChvUeMtjR49o3ttHjf_D-ibvNRGo6U23o9c8jVfnvUHDKc7h8dw47LqT4fMlgQ38DuXe4FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219181774</pqid></control><display><type>article</type><title>Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models</title><source>Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Marchetti, Domenico J. ; Parigi, Giuseppe</creator><creatorcontrib>Marchetti, Domenico J. ; Parigi, Giuseppe</creatorcontrib><description>We investigate the prediction of italian industrial production and first specify a model based on electricity consumption showing that the cubic trend in such a model mostly captures the evolution over time of the electricity coefficient, which can be well approximated by a smooth transition model, with no gains in predictive power. We also analyse the performance of models based on data of two different business surveys. According to the standard statistics of forecasting accuracy, the linear energy‐based model is not outperformed by any other model, nor by a combination of forecasts. However, a more comprehensive set of evaluation criteria sheds light on the relative merit of each individual model. A modelling strategy which makes full use of all information available is proposed. Copyright © 2000 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/1099-131X(200009)19:5<419::AID-FOR749>3.0.CO;2-J</identifier><identifier>CODEN: JOFODV</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Business cycles ; combination of forecasts ; Comparative analysis ; Economic models ; Electric power ; Electricity ; Electricity distribution ; Energy consumption ; Forecasting ; Forecasts ; Households ; Industrial production ; Information sources ; Italy ; Regression analysis ; smooth transition regression ; Studies ; Survey data ; Variables</subject><ispartof>Journal of forecasting, 2000-09, Vol.19 (5), p.419-440</ispartof><rights>Copyright © 2000 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Periodicals Inc. Sep 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3449-80c8f86a1bb74900d21298410074b5f7471d5bf30fefdf83161bb6b574681b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1099-131X%28200009%2919%3A5%3C419%3A%3AAID-FOR749%3E3.0.CO%3B2-J$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1099-131X%28200009%2919%3A5%3C419%3A%3AAID-FOR749%3E3.0.CO%3B2-J$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Marchetti, Domenico J.</creatorcontrib><creatorcontrib>Parigi, Giuseppe</creatorcontrib><title>Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models</title><title>Journal of forecasting</title><addtitle>J. Forecast</addtitle><description>We investigate the prediction of italian industrial production and first specify a model based on electricity consumption showing that the cubic trend in such a model mostly captures the evolution over time of the electricity coefficient, which can be well approximated by a smooth transition model, with no gains in predictive power. We also analyse the performance of models based on data of two different business surveys. According to the standard statistics of forecasting accuracy, the linear energy‐based model is not outperformed by any other model, nor by a combination of forecasts. However, a more comprehensive set of evaluation criteria sheds light on the relative merit of each individual model. A modelling strategy which makes full use of all information available is proposed. Copyright © 2000 John Wiley & Sons, Ltd.</description><subject>Business cycles</subject><subject>combination of forecasts</subject><subject>Comparative analysis</subject><subject>Economic models</subject><subject>Electric power</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Energy consumption</subject><subject>Forecasting</subject><subject>Forecasts</subject><subject>Households</subject><subject>Industrial production</subject><subject>Information sources</subject><subject>Italy</subject><subject>Regression analysis</subject><subject>smooth transition regression</subject><subject>Studies</subject><subject>Survey data</subject><subject>Variables</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkcFu1DAQhiMEEkvhHSwOCCSy2LET2wtCqpZu2VXFIkCU28hJbHBJnMVOWvICPDeOUvaAuOCDrZn559OM_yQRBC8JxtkLgqVMCSVfnmY4HvmMyFX-isV7dbp9k272HziTr-kSL9f7l1m6u5Msji13kwXOOE-LQtL7yYMQriKBC5Itkl9nTvuvI6o6F4b20NvOPUdh8Nd6RLXqFVKuRv03jQ5e17aa6qgzyLp6CL23qomFrh7mgnVo26tmXCEVge1BeRtiekLEsLRO_emvrTHaa9ejtqt1Ex4m94xqgn50-54kHzdnn9Zv04v9-XZ9epFWlDGZClwJIwpFyjJui3GdkUwKFj-IszI3nHFS56Wh2GhTG0FJEZVFmXNWCFLSk-TJTI0z_xh06KG1odJNo5zuhgBUyJwQiqPw8V_Cq27wLk4GGZFEEM5ZFL2fRZXvQvDawMHbVvkRCIbJM5gMgMkAmD0DIiGH6BlA9Axmz4AChvUeMtjR49o3ttHjf_D-ibvNRGo6U23o9c8jVfnvUHDKc7h8dw47LqT4fMlgQ38DuXe4FQ</recordid><startdate>200009</startdate><enddate>200009</enddate><creator>Marchetti, Domenico J.</creator><creator>Parigi, Giuseppe</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>200009</creationdate><title>Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models</title><author>Marchetti, Domenico J. ; Parigi, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3449-80c8f86a1bb74900d21298410074b5f7471d5bf30fefdf83161bb6b574681b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Business cycles</topic><topic>combination of forecasts</topic><topic>Comparative analysis</topic><topic>Economic models</topic><topic>Electric power</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Energy consumption</topic><topic>Forecasting</topic><topic>Forecasts</topic><topic>Households</topic><topic>Industrial production</topic><topic>Information sources</topic><topic>Italy</topic><topic>Regression analysis</topic><topic>smooth transition regression</topic><topic>Studies</topic><topic>Survey data</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchetti, Domenico J.</creatorcontrib><creatorcontrib>Parigi, Giuseppe</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchetti, Domenico J.</au><au>Parigi, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models</atitle><jtitle>Journal of forecasting</jtitle><addtitle>J. Forecast</addtitle><date>2000-09</date><risdate>2000</risdate><volume>19</volume><issue>5</issue><spage>419</spage><epage>440</epage><pages>419-440</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><coden>JOFODV</coden><abstract>We investigate the prediction of italian industrial production and first specify a model based on electricity consumption showing that the cubic trend in such a model mostly captures the evolution over time of the electricity coefficient, which can be well approximated by a smooth transition model, with no gains in predictive power. We also analyse the performance of models based on data of two different business surveys. According to the standard statistics of forecasting accuracy, the linear energy‐based model is not outperformed by any other model, nor by a combination of forecasts. However, a more comprehensive set of evaluation criteria sheds light on the relative merit of each individual model. A modelling strategy which makes full use of all information available is proposed. Copyright © 2000 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/1099-131X(200009)19:5<419::AID-FOR749>3.0.CO;2-J</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6693 |
ispartof | Journal of forecasting, 2000-09, Vol.19 (5), p.419-440 |
issn | 0277-6693 1099-131X |
language | eng |
recordid | cdi_proquest_miscellaneous_38951130 |
source | Business Source Complete; Access via Wiley Online Library |
subjects | Business cycles combination of forecasts Comparative analysis Economic models Electric power Electricity Electricity distribution Energy consumption Forecasting Forecasts Households Industrial production Information sources Italy Regression analysis smooth transition regression Studies Survey data Variables |
title | Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T14%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20consumption,%20survey%20data%20and%20the%20prediction%20of%20industrial%20production%20in%20Italy:%20a%20comparison%20and%20combination%20of%20different%20models&rft.jtitle=Journal%20of%20forecasting&rft.au=Marchetti,%20Domenico%20J.&rft.date=2000-09&rft.volume=19&rft.issue=5&rft.spage=419&rft.epage=440&rft.pages=419-440&rft.issn=0277-6693&rft.eissn=1099-131X&rft.coden=JOFODV&rft_id=info:doi/10.1002/1099-131X(200009)19:5%3C419::AID-FOR749%3E3.0.CO;2-J&rft_dat=%3Cproquest_cross%3E38951130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219181774&rft_id=info:pmid/&rfr_iscdi=true |