Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models

We investigate the prediction of italian industrial production and first specify a model based on electricity consumption showing that the cubic trend in such a model mostly captures the evolution over time of the electricity coefficient, which can be well approximated by a smooth transition model,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2000-09, Vol.19 (5), p.419-440
Hauptverfasser: Marchetti, Domenico J., Parigi, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 5
container_start_page 419
container_title Journal of forecasting
container_volume 19
creator Marchetti, Domenico J.
Parigi, Giuseppe
description We investigate the prediction of italian industrial production and first specify a model based on electricity consumption showing that the cubic trend in such a model mostly captures the evolution over time of the electricity coefficient, which can be well approximated by a smooth transition model, with no gains in predictive power. We also analyse the performance of models based on data of two different business surveys. According to the standard statistics of forecasting accuracy, the linear energy‐based model is not outperformed by any other model, nor by a combination of forecasts. However, a more comprehensive set of evaluation criteria sheds light on the relative merit of each individual model. A modelling strategy which makes full use of all information available is proposed. Copyright © 2000 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/1099-131X(200009)19:5<419::AID-FOR749>3.0.CO;2-J
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38951130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38951130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3449-80c8f86a1bb74900d21298410074b5f7471d5bf30fefdf83161bb6b574681b3</originalsourceid><addsrcrecordid>eNqVkcFu1DAQhiMEEkvhHSwOCCSy2LET2wtCqpZu2VXFIkCU28hJbHBJnMVOWvICPDeOUvaAuOCDrZn559OM_yQRBC8JxtkLgqVMCSVfnmY4HvmMyFX-isV7dbp9k272HziTr-kSL9f7l1m6u5Msji13kwXOOE-LQtL7yYMQriKBC5Itkl9nTvuvI6o6F4b20NvOPUdh8Nd6RLXqFVKuRv03jQ5e17aa6qgzyLp6CL23qomFrh7mgnVo26tmXCEVge1BeRtiekLEsLRO_emvrTHaa9ejtqt1Ex4m94xqgn50-54kHzdnn9Zv04v9-XZ9epFWlDGZClwJIwpFyjJui3GdkUwKFj-IszI3nHFS56Wh2GhTG0FJEZVFmXNWCFLSk-TJTI0z_xh06KG1odJNo5zuhgBUyJwQiqPw8V_Cq27wLk4GGZFEEM5ZFL2fRZXvQvDawMHbVvkRCIbJM5gMgMkAmD0DIiGH6BlA9Axmz4AChvUeMtjR49o3ttHjf_D-ibvNRGo6U23o9c8jVfnvUHDKc7h8dw47LqT4fMlgQ38DuXe4FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219181774</pqid></control><display><type>article</type><title>Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models</title><source>Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Marchetti, Domenico J. ; Parigi, Giuseppe</creator><creatorcontrib>Marchetti, Domenico J. ; Parigi, Giuseppe</creatorcontrib><description>We investigate the prediction of italian industrial production and first specify a model based on electricity consumption showing that the cubic trend in such a model mostly captures the evolution over time of the electricity coefficient, which can be well approximated by a smooth transition model, with no gains in predictive power. We also analyse the performance of models based on data of two different business surveys. According to the standard statistics of forecasting accuracy, the linear energy‐based model is not outperformed by any other model, nor by a combination of forecasts. However, a more comprehensive set of evaluation criteria sheds light on the relative merit of each individual model. A modelling strategy which makes full use of all information available is proposed. Copyright © 2000 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/1099-131X(200009)19:5&lt;419::AID-FOR749&gt;3.0.CO;2-J</identifier><identifier>CODEN: JOFODV</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Business cycles ; combination of forecasts ; Comparative analysis ; Economic models ; Electric power ; Electricity ; Electricity distribution ; Energy consumption ; Forecasting ; Forecasts ; Households ; Industrial production ; Information sources ; Italy ; Regression analysis ; smooth transition regression ; Studies ; Survey data ; Variables</subject><ispartof>Journal of forecasting, 2000-09, Vol.19 (5), p.419-440</ispartof><rights>Copyright © 2000 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Periodicals Inc. Sep 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3449-80c8f86a1bb74900d21298410074b5f7471d5bf30fefdf83161bb6b574681b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1099-131X%28200009%2919%3A5%3C419%3A%3AAID-FOR749%3E3.0.CO%3B2-J$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1099-131X%28200009%2919%3A5%3C419%3A%3AAID-FOR749%3E3.0.CO%3B2-J$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Marchetti, Domenico J.</creatorcontrib><creatorcontrib>Parigi, Giuseppe</creatorcontrib><title>Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models</title><title>Journal of forecasting</title><addtitle>J. Forecast</addtitle><description>We investigate the prediction of italian industrial production and first specify a model based on electricity consumption showing that the cubic trend in such a model mostly captures the evolution over time of the electricity coefficient, which can be well approximated by a smooth transition model, with no gains in predictive power. We also analyse the performance of models based on data of two different business surveys. According to the standard statistics of forecasting accuracy, the linear energy‐based model is not outperformed by any other model, nor by a combination of forecasts. However, a more comprehensive set of evaluation criteria sheds light on the relative merit of each individual model. A modelling strategy which makes full use of all information available is proposed. Copyright © 2000 John Wiley &amp; Sons, Ltd.</description><subject>Business cycles</subject><subject>combination of forecasts</subject><subject>Comparative analysis</subject><subject>Economic models</subject><subject>Electric power</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Energy consumption</subject><subject>Forecasting</subject><subject>Forecasts</subject><subject>Households</subject><subject>Industrial production</subject><subject>Information sources</subject><subject>Italy</subject><subject>Regression analysis</subject><subject>smooth transition regression</subject><subject>Studies</subject><subject>Survey data</subject><subject>Variables</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkcFu1DAQhiMEEkvhHSwOCCSy2LET2wtCqpZu2VXFIkCU28hJbHBJnMVOWvICPDeOUvaAuOCDrZn559OM_yQRBC8JxtkLgqVMCSVfnmY4HvmMyFX-isV7dbp9k272HziTr-kSL9f7l1m6u5Msji13kwXOOE-LQtL7yYMQriKBC5Itkl9nTvuvI6o6F4b20NvOPUdh8Nd6RLXqFVKuRv03jQ5e17aa6qgzyLp6CL23qomFrh7mgnVo26tmXCEVge1BeRtiekLEsLRO_emvrTHaa9ejtqt1Ex4m94xqgn50-54kHzdnn9Zv04v9-XZ9epFWlDGZClwJIwpFyjJui3GdkUwKFj-IszI3nHFS56Wh2GhTG0FJEZVFmXNWCFLSk-TJTI0z_xh06KG1odJNo5zuhgBUyJwQiqPw8V_Cq27wLk4GGZFEEM5ZFL2fRZXvQvDawMHbVvkRCIbJM5gMgMkAmD0DIiGH6BlA9Axmz4AChvUeMtjR49o3ttHjf_D-ibvNRGo6U23o9c8jVfnvUHDKc7h8dw47LqT4fMlgQ38DuXe4FQ</recordid><startdate>200009</startdate><enddate>200009</enddate><creator>Marchetti, Domenico J.</creator><creator>Parigi, Giuseppe</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>200009</creationdate><title>Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models</title><author>Marchetti, Domenico J. ; Parigi, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3449-80c8f86a1bb74900d21298410074b5f7471d5bf30fefdf83161bb6b574681b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Business cycles</topic><topic>combination of forecasts</topic><topic>Comparative analysis</topic><topic>Economic models</topic><topic>Electric power</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Energy consumption</topic><topic>Forecasting</topic><topic>Forecasts</topic><topic>Households</topic><topic>Industrial production</topic><topic>Information sources</topic><topic>Italy</topic><topic>Regression analysis</topic><topic>smooth transition regression</topic><topic>Studies</topic><topic>Survey data</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchetti, Domenico J.</creatorcontrib><creatorcontrib>Parigi, Giuseppe</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchetti, Domenico J.</au><au>Parigi, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models</atitle><jtitle>Journal of forecasting</jtitle><addtitle>J. Forecast</addtitle><date>2000-09</date><risdate>2000</risdate><volume>19</volume><issue>5</issue><spage>419</spage><epage>440</epage><pages>419-440</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><coden>JOFODV</coden><abstract>We investigate the prediction of italian industrial production and first specify a model based on electricity consumption showing that the cubic trend in such a model mostly captures the evolution over time of the electricity coefficient, which can be well approximated by a smooth transition model, with no gains in predictive power. We also analyse the performance of models based on data of two different business surveys. According to the standard statistics of forecasting accuracy, the linear energy‐based model is not outperformed by any other model, nor by a combination of forecasts. However, a more comprehensive set of evaluation criteria sheds light on the relative merit of each individual model. A modelling strategy which makes full use of all information available is proposed. Copyright © 2000 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/1099-131X(200009)19:5&lt;419::AID-FOR749&gt;3.0.CO;2-J</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6693
ispartof Journal of forecasting, 2000-09, Vol.19 (5), p.419-440
issn 0277-6693
1099-131X
language eng
recordid cdi_proquest_miscellaneous_38951130
source Business Source Complete; Access via Wiley Online Library
subjects Business cycles
combination of forecasts
Comparative analysis
Economic models
Electric power
Electricity
Electricity distribution
Energy consumption
Forecasting
Forecasts
Households
Industrial production
Information sources
Italy
Regression analysis
smooth transition regression
Studies
Survey data
Variables
title Energy consumption, survey data and the prediction of industrial production in Italy: a comparison and combination of different models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T14%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20consumption,%20survey%20data%20and%20the%20prediction%20of%20industrial%20production%20in%20Italy:%20a%20comparison%20and%20combination%20of%20different%20models&rft.jtitle=Journal%20of%20forecasting&rft.au=Marchetti,%20Domenico%20J.&rft.date=2000-09&rft.volume=19&rft.issue=5&rft.spage=419&rft.epage=440&rft.pages=419-440&rft.issn=0277-6693&rft.eissn=1099-131X&rft.coden=JOFODV&rft_id=info:doi/10.1002/1099-131X(200009)19:5%3C419::AID-FOR749%3E3.0.CO;2-J&rft_dat=%3Cproquest_cross%3E38951130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219181774&rft_id=info:pmid/&rfr_iscdi=true