Detecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory

Interest in the relevance of nonlinear dynamics to fields such as finance and economics has spurred the development of new methods of analysis for time series data. Early tests for chaos led to problems when applied to financial and economic data. This motivated development of the BDS family of stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business finance & accounting 1996-12, Vol.23 (9-10), p.1357-1377
1. Verfasser: Gilmore, Claire G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1377
container_issue 9-10
container_start_page 1357
container_title Journal of business finance & accounting
container_volume 23
creator Gilmore, Claire G.
description Interest in the relevance of nonlinear dynamics to fields such as finance and economics has spurred the development of new methods of analysis for time series data. Early tests for chaos led to problems when applied to financial and economic data. This motivated development of the BDS family of statistics to test for nonlinearity generally. More recently, another method of analysis has been introduced into the scientific literature. It uses a test for chaos which is relatively simple and appropriate for financial data. A quantitative version of this test is developed here and is used to analyze stock return data.
doi_str_mv 10.1111/1468-5957.00084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38942273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10595499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3007-341332943894630c9e5ad3553e748de2373e9956903483591ef5b5b19aafd5723</originalsourceid><addsrcrecordid>eNqFUMFuEzEQXSGQCC1nrhYHbtvaO2t7za2kpKUKKYJCe7Mc7yzZdGMHe9OSv6-XRTlwwdJ45NF7z29elr1h9ISlc8pKUeVccXlCKa3KZ9nkMHmeTShQkYtK3L3MXsW4TpCCCTnJzDn2aPvW_STz1qEJxLiaLLzrxtc5btHV6CyS1pFvvbf35Cv2u-Die7LAR_IZ-5WvYwKG9gFr0gS_IdOV8ZHcrNCH_XH2ojFdxNd_-1H2ffbxZnqZz68vPk3P5rkFSmUOJQMoVAmVKgVQq5CbGjgHlGVVYwESUCkuFIWyAq4YNnzJl0wZ09RcFnCUvRt1t8H_2mHs9aaNFrvOOPS7qAfhopCQgG__Aa592id50-kXymklZAKdjiAbfIwBG70N7caEvWZUD3nrIV09pKv_5J0Y1yMjpMjsAb7szHrZOGP1gwZTQLr2qZhSIrU2lRokwWyHKSQ5BlLqVb9JinxUfGw73P_PgL76MDtjBR285yOvjT3-PvBMuNdpM8n17eJC313dzi6F-KJ_wBNiXqkm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237050867</pqid></control><display><type>article</type><title>Detecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory</title><source>RePEc</source><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Gilmore, Claire G.</creator><creatorcontrib>Gilmore, Claire G.</creatorcontrib><description>Interest in the relevance of nonlinear dynamics to fields such as finance and economics has spurred the development of new methods of analysis for time series data. Early tests for chaos led to problems when applied to financial and economic data. This motivated development of the BDS family of statistics to test for nonlinearity generally. More recently, another method of analysis has been introduced into the scientific literature. It uses a test for chaos which is relatively simple and appropriate for financial data. A quantitative version of this test is developed here and is used to analyze stock return data.</description><identifier>ISSN: 0306-686X</identifier><identifier>EISSN: 1468-5957</identifier><identifier>DOI: 10.1111/1468-5957.00084</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Accounting ; chaos ; Chaos theory ; Datasets ; Efficient markets ; heteroscedasticity ; Hypotheses ; Linear models ; nonlinearity ; Random variables ; Rates of return ; Securities prices ; Stock exchange ; Stock exchanges ; Stock prices ; Stock returns ; Time series</subject><ispartof>Journal of business finance &amp; accounting, 1996-12, Vol.23 (9-10), p.1357-1377</ispartof><rights>1996 Blackwell Publishers Ltd.</rights><rights>Copyright Blackwell Publishers Dec 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3007-341332943894630c9e5ad3553e748de2373e9956903483591ef5b5b19aafd5723</citedby><cites>FETCH-LOGICAL-c3007-341332943894630c9e5ad3553e748de2373e9956903483591ef5b5b19aafd5723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1468-5957.00084$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1468-5957.00084$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4008,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blajbfnac/v_3a23_3ay_3a1996_3ai_3a9-10_3ap_3a1357-1377.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilmore, Claire G.</creatorcontrib><title>Detecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory</title><title>Journal of business finance &amp; accounting</title><description>Interest in the relevance of nonlinear dynamics to fields such as finance and economics has spurred the development of new methods of analysis for time series data. Early tests for chaos led to problems when applied to financial and economic data. This motivated development of the BDS family of statistics to test for nonlinearity generally. More recently, another method of analysis has been introduced into the scientific literature. It uses a test for chaos which is relatively simple and appropriate for financial data. A quantitative version of this test is developed here and is used to analyze stock return data.</description><subject>Accounting</subject><subject>chaos</subject><subject>Chaos theory</subject><subject>Datasets</subject><subject>Efficient markets</subject><subject>heteroscedasticity</subject><subject>Hypotheses</subject><subject>Linear models</subject><subject>nonlinearity</subject><subject>Random variables</subject><subject>Rates of return</subject><subject>Securities prices</subject><subject>Stock exchange</subject><subject>Stock exchanges</subject><subject>Stock prices</subject><subject>Stock returns</subject><subject>Time series</subject><issn>0306-686X</issn><issn>1468-5957</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUMFuEzEQXSGQCC1nrhYHbtvaO2t7za2kpKUKKYJCe7Mc7yzZdGMHe9OSv6-XRTlwwdJ45NF7z29elr1h9ISlc8pKUeVccXlCKa3KZ9nkMHmeTShQkYtK3L3MXsW4TpCCCTnJzDn2aPvW_STz1qEJxLiaLLzrxtc5btHV6CyS1pFvvbf35Cv2u-Die7LAR_IZ-5WvYwKG9gFr0gS_IdOV8ZHcrNCH_XH2ojFdxNd_-1H2ffbxZnqZz68vPk3P5rkFSmUOJQMoVAmVKgVQq5CbGjgHlGVVYwESUCkuFIWyAq4YNnzJl0wZ09RcFnCUvRt1t8H_2mHs9aaNFrvOOPS7qAfhopCQgG__Aa592id50-kXymklZAKdjiAbfIwBG70N7caEvWZUD3nrIV09pKv_5J0Y1yMjpMjsAb7szHrZOGP1gwZTQLr2qZhSIrU2lRokwWyHKSQ5BlLqVb9JinxUfGw73P_PgL76MDtjBR285yOvjT3-PvBMuNdpM8n17eJC313dzi6F-KJ_wBNiXqkm</recordid><startdate>199612</startdate><enddate>199612</enddate><creator>Gilmore, Claire G.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Blackwell</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>199612</creationdate><title>Detecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory</title><author>Gilmore, Claire G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3007-341332943894630c9e5ad3553e748de2373e9956903483591ef5b5b19aafd5723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Accounting</topic><topic>chaos</topic><topic>Chaos theory</topic><topic>Datasets</topic><topic>Efficient markets</topic><topic>heteroscedasticity</topic><topic>Hypotheses</topic><topic>Linear models</topic><topic>nonlinearity</topic><topic>Random variables</topic><topic>Rates of return</topic><topic>Securities prices</topic><topic>Stock exchange</topic><topic>Stock exchanges</topic><topic>Stock prices</topic><topic>Stock returns</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilmore, Claire G.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of business finance &amp; accounting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilmore, Claire G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory</atitle><jtitle>Journal of business finance &amp; accounting</jtitle><date>1996-12</date><risdate>1996</risdate><volume>23</volume><issue>9-10</issue><spage>1357</spage><epage>1377</epage><pages>1357-1377</pages><issn>0306-686X</issn><eissn>1468-5957</eissn><abstract>Interest in the relevance of nonlinear dynamics to fields such as finance and economics has spurred the development of new methods of analysis for time series data. Early tests for chaos led to problems when applied to financial and economic data. This motivated development of the BDS family of statistics to test for nonlinearity generally. More recently, another method of analysis has been introduced into the scientific literature. It uses a test for chaos which is relatively simple and appropriate for financial data. A quantitative version of this test is developed here and is used to analyze stock return data.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1468-5957.00084</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-686X
ispartof Journal of business finance & accounting, 1996-12, Vol.23 (9-10), p.1357-1377
issn 0306-686X
1468-5957
language eng
recordid cdi_proquest_miscellaneous_38942273
source RePEc; EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects Accounting
chaos
Chaos theory
Datasets
Efficient markets
heteroscedasticity
Hypotheses
Linear models
nonlinearity
Random variables
Rates of return
Securities prices
Stock exchange
Stock exchanges
Stock prices
Stock returns
Time series
title Detecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Linear%20and%20Nonlinear%20Dependence%20in%20Stock%20Returns:%20New%20Methods%20Derived%20from%20Chaos%20Theory&rft.jtitle=Journal%20of%20business%20finance%20&%20accounting&rft.au=Gilmore,%20Claire%20G.&rft.date=1996-12&rft.volume=23&rft.issue=9-10&rft.spage=1357&rft.epage=1377&rft.pages=1357-1377&rft.issn=0306-686X&rft.eissn=1468-5957&rft_id=info:doi/10.1111/1468-5957.00084&rft_dat=%3Cproquest_cross%3E10595499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237050867&rft_id=info:pmid/&rfr_iscdi=true