Detecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory
Interest in the relevance of nonlinear dynamics to fields such as finance and economics has spurred the development of new methods of analysis for time series data. Early tests for chaos led to problems when applied to financial and economic data. This motivated development of the BDS family of stat...
Gespeichert in:
Veröffentlicht in: | Journal of business finance & accounting 1996-12, Vol.23 (9-10), p.1357-1377 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1377 |
---|---|
container_issue | 9-10 |
container_start_page | 1357 |
container_title | Journal of business finance & accounting |
container_volume | 23 |
creator | Gilmore, Claire G. |
description | Interest in the relevance of nonlinear dynamics to fields such as finance and economics has spurred the development of new methods of analysis for time series data. Early tests for chaos led to problems when applied to financial and economic data. This motivated development of the BDS family of statistics to test for nonlinearity generally. More recently, another method of analysis has been introduced into the scientific literature. It uses a test for chaos which is relatively simple and appropriate for financial data. A quantitative version of this test is developed here and is used to analyze stock return data. |
doi_str_mv | 10.1111/1468-5957.00084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38942273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10595499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3007-341332943894630c9e5ad3553e748de2373e9956903483591ef5b5b19aafd5723</originalsourceid><addsrcrecordid>eNqFUMFuEzEQXSGQCC1nrhYHbtvaO2t7za2kpKUKKYJCe7Mc7yzZdGMHe9OSv6-XRTlwwdJ45NF7z29elr1h9ISlc8pKUeVccXlCKa3KZ9nkMHmeTShQkYtK3L3MXsW4TpCCCTnJzDn2aPvW_STz1qEJxLiaLLzrxtc5btHV6CyS1pFvvbf35Cv2u-Die7LAR_IZ-5WvYwKG9gFr0gS_IdOV8ZHcrNCH_XH2ojFdxNd_-1H2ffbxZnqZz68vPk3P5rkFSmUOJQMoVAmVKgVQq5CbGjgHlGVVYwESUCkuFIWyAq4YNnzJl0wZ09RcFnCUvRt1t8H_2mHs9aaNFrvOOPS7qAfhopCQgG__Aa592id50-kXymklZAKdjiAbfIwBG70N7caEvWZUD3nrIV09pKv_5J0Y1yMjpMjsAb7szHrZOGP1gwZTQLr2qZhSIrU2lRokwWyHKSQ5BlLqVb9JinxUfGw73P_PgL76MDtjBR285yOvjT3-PvBMuNdpM8n17eJC313dzi6F-KJ_wBNiXqkm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237050867</pqid></control><display><type>article</type><title>Detecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory</title><source>RePEc</source><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Gilmore, Claire G.</creator><creatorcontrib>Gilmore, Claire G.</creatorcontrib><description>Interest in the relevance of nonlinear dynamics to fields such as finance and economics has spurred the development of new methods of analysis for time series data. Early tests for chaos led to problems when applied to financial and economic data. This motivated development of the BDS family of statistics to test for nonlinearity generally. More recently, another method of analysis has been introduced into the scientific literature. It uses a test for chaos which is relatively simple and appropriate for financial data. A quantitative version of this test is developed here and is used to analyze stock return data.</description><identifier>ISSN: 0306-686X</identifier><identifier>EISSN: 1468-5957</identifier><identifier>DOI: 10.1111/1468-5957.00084</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Accounting ; chaos ; Chaos theory ; Datasets ; Efficient markets ; heteroscedasticity ; Hypotheses ; Linear models ; nonlinearity ; Random variables ; Rates of return ; Securities prices ; Stock exchange ; Stock exchanges ; Stock prices ; Stock returns ; Time series</subject><ispartof>Journal of business finance & accounting, 1996-12, Vol.23 (9-10), p.1357-1377</ispartof><rights>1996 Blackwell Publishers Ltd.</rights><rights>Copyright Blackwell Publishers Dec 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3007-341332943894630c9e5ad3553e748de2373e9956903483591ef5b5b19aafd5723</citedby><cites>FETCH-LOGICAL-c3007-341332943894630c9e5ad3553e748de2373e9956903483591ef5b5b19aafd5723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1468-5957.00084$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1468-5957.00084$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4008,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blajbfnac/v_3a23_3ay_3a1996_3ai_3a9-10_3ap_3a1357-1377.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilmore, Claire G.</creatorcontrib><title>Detecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory</title><title>Journal of business finance & accounting</title><description>Interest in the relevance of nonlinear dynamics to fields such as finance and economics has spurred the development of new methods of analysis for time series data. Early tests for chaos led to problems when applied to financial and economic data. This motivated development of the BDS family of statistics to test for nonlinearity generally. More recently, another method of analysis has been introduced into the scientific literature. It uses a test for chaos which is relatively simple and appropriate for financial data. A quantitative version of this test is developed here and is used to analyze stock return data.</description><subject>Accounting</subject><subject>chaos</subject><subject>Chaos theory</subject><subject>Datasets</subject><subject>Efficient markets</subject><subject>heteroscedasticity</subject><subject>Hypotheses</subject><subject>Linear models</subject><subject>nonlinearity</subject><subject>Random variables</subject><subject>Rates of return</subject><subject>Securities prices</subject><subject>Stock exchange</subject><subject>Stock exchanges</subject><subject>Stock prices</subject><subject>Stock returns</subject><subject>Time series</subject><issn>0306-686X</issn><issn>1468-5957</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUMFuEzEQXSGQCC1nrhYHbtvaO2t7za2kpKUKKYJCe7Mc7yzZdGMHe9OSv6-XRTlwwdJ45NF7z29elr1h9ISlc8pKUeVccXlCKa3KZ9nkMHmeTShQkYtK3L3MXsW4TpCCCTnJzDn2aPvW_STz1qEJxLiaLLzrxtc5btHV6CyS1pFvvbf35Cv2u-Die7LAR_IZ-5WvYwKG9gFr0gS_IdOV8ZHcrNCH_XH2ojFdxNd_-1H2ffbxZnqZz68vPk3P5rkFSmUOJQMoVAmVKgVQq5CbGjgHlGVVYwESUCkuFIWyAq4YNnzJl0wZ09RcFnCUvRt1t8H_2mHs9aaNFrvOOPS7qAfhopCQgG__Aa592id50-kXymklZAKdjiAbfIwBG70N7caEvWZUD3nrIV09pKv_5J0Y1yMjpMjsAb7szHrZOGP1gwZTQLr2qZhSIrU2lRokwWyHKSQ5BlLqVb9JinxUfGw73P_PgL76MDtjBR285yOvjT3-PvBMuNdpM8n17eJC313dzi6F-KJ_wBNiXqkm</recordid><startdate>199612</startdate><enddate>199612</enddate><creator>Gilmore, Claire G.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Blackwell</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>199612</creationdate><title>Detecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory</title><author>Gilmore, Claire G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3007-341332943894630c9e5ad3553e748de2373e9956903483591ef5b5b19aafd5723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Accounting</topic><topic>chaos</topic><topic>Chaos theory</topic><topic>Datasets</topic><topic>Efficient markets</topic><topic>heteroscedasticity</topic><topic>Hypotheses</topic><topic>Linear models</topic><topic>nonlinearity</topic><topic>Random variables</topic><topic>Rates of return</topic><topic>Securities prices</topic><topic>Stock exchange</topic><topic>Stock exchanges</topic><topic>Stock prices</topic><topic>Stock returns</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilmore, Claire G.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of business finance & accounting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilmore, Claire G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory</atitle><jtitle>Journal of business finance & accounting</jtitle><date>1996-12</date><risdate>1996</risdate><volume>23</volume><issue>9-10</issue><spage>1357</spage><epage>1377</epage><pages>1357-1377</pages><issn>0306-686X</issn><eissn>1468-5957</eissn><abstract>Interest in the relevance of nonlinear dynamics to fields such as finance and economics has spurred the development of new methods of analysis for time series data. Early tests for chaos led to problems when applied to financial and economic data. This motivated development of the BDS family of statistics to test for nonlinearity generally. More recently, another method of analysis has been introduced into the scientific literature. It uses a test for chaos which is relatively simple and appropriate for financial data. A quantitative version of this test is developed here and is used to analyze stock return data.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1468-5957.00084</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-686X |
ispartof | Journal of business finance & accounting, 1996-12, Vol.23 (9-10), p.1357-1377 |
issn | 0306-686X 1468-5957 |
language | eng |
recordid | cdi_proquest_miscellaneous_38942273 |
source | RePEc; EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | Accounting chaos Chaos theory Datasets Efficient markets heteroscedasticity Hypotheses Linear models nonlinearity Random variables Rates of return Securities prices Stock exchange Stock exchanges Stock prices Stock returns Time series |
title | Detecting Linear and Nonlinear Dependence in Stock Returns: New Methods Derived from Chaos Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Linear%20and%20Nonlinear%20Dependence%20in%20Stock%20Returns:%20New%20Methods%20Derived%20from%20Chaos%20Theory&rft.jtitle=Journal%20of%20business%20finance%20&%20accounting&rft.au=Gilmore,%20Claire%20G.&rft.date=1996-12&rft.volume=23&rft.issue=9-10&rft.spage=1357&rft.epage=1377&rft.pages=1357-1377&rft.issn=0306-686X&rft.eissn=1468-5957&rft_id=info:doi/10.1111/1468-5957.00084&rft_dat=%3Cproquest_cross%3E10595499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237050867&rft_id=info:pmid/&rfr_iscdi=true |