Predicting criminal recidivism using neural networks

Prediction of criminal recidivism has been extensively studied in criminology with a variety of statistical models. This article proposes the use of neural network (NN) models to address the problem of splitting the population into two groups — non-recidivists and eventual recidivists — based on a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Socio-economic planning sciences 2000-12, Vol.34 (4), p.271-284
Hauptverfasser: Palocsay, Susan W., Wang, Ping, Brookshire, Robert G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 4
container_start_page 271
container_title Socio-economic planning sciences
container_volume 34
creator Palocsay, Susan W.
Wang, Ping
Brookshire, Robert G.
description Prediction of criminal recidivism has been extensively studied in criminology with a variety of statistical models. This article proposes the use of neural network (NN) models to address the problem of splitting the population into two groups — non-recidivists and eventual recidivists — based on a set of predictor variables. The results from an empirical study of the classification capabilities of NN on a well-known recidivism data set are presented and discussed in comparison with logistic regression. Analysis indicates that NN models are competitive with, and may offer some advantages over, traditional statistical models in this domain.
doi_str_mv 10.1016/S0038-0121(00)00003-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38922148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038012100000033</els_id><sourcerecordid>38922148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283m-f6e70750b03688f9216f3d5bffe678dd46a236b084b8c8bd93acb9445af0ef3d3</originalsourceid><addsrcrecordid>eNqFkVtLxDAQhYMouK7-BGGfRB-qk0vT9Elk8cqCgvoc2nSq0e3FpF3Zf2-6lX3dwGRg8p1DckLIKYVLClRevQJwFQFl9BzgAsLiEd8jE6oSHkkQdJ9MtsghOfL-KzBMsHhCxIvDwprO1h8z42xl62w5c2hsYVfWV7PeDyc19i7Ma-x-G_ftj8lBmS09nvz3KXm_u32bP0SL5_vH-c0iMkzxKiolJpDEkAOXSpUpo7LkRZyXJcpEFYWQGeMyByVyZVRepDwzeSpEnJWAgeRTcjb6tq756dF3urLe4HKZ1dj0XnOVMkaF2gnSJOES5ADGI2hc473DUrfh0Zlbawp6CFNvwtRDUhpAb8LUPOieRp3DFs1WhIi-Mdh6vdI84yJs61AsqEKzoYZRO4wSqpkS-rOrgtn1aIYhu5VFp72xWJvwESH5TheN3XGdP9nnlGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17736068</pqid></control><display><type>article</type><title>Predicting criminal recidivism using neural networks</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Palocsay, Susan W. ; Wang, Ping ; Brookshire, Robert G.</creator><creatorcontrib>Palocsay, Susan W. ; Wang, Ping ; Brookshire, Robert G.</creatorcontrib><description>Prediction of criminal recidivism has been extensively studied in criminology with a variety of statistical models. This article proposes the use of neural network (NN) models to address the problem of splitting the population into two groups — non-recidivists and eventual recidivists — based on a set of predictor variables. The results from an empirical study of the classification capabilities of NN on a well-known recidivism data set are presented and discussed in comparison with logistic regression. Analysis indicates that NN models are competitive with, and may offer some advantages over, traditional statistical models in this domain.</description><identifier>ISSN: 0038-0121</identifier><identifier>EISSN: 1873-6041</identifier><identifier>DOI: 10.1016/S0038-0121(00)00003-3</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Criminology ; forecasting ; Mathematical analysis ; neural networks ; North Carolina ; Offenders ; prediction ; Probability ; Recidivism ; Regression analysis ; Social research ; Statistical models ; U.S.A</subject><ispartof>Socio-economic planning sciences, 2000-12, Vol.34 (4), p.271-284</ispartof><rights>2000 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283m-f6e70750b03688f9216f3d5bffe678dd46a236b084b8c8bd93acb9445af0ef3d3</citedby><cites>FETCH-LOGICAL-c283m-f6e70750b03688f9216f3d5bffe678dd46a236b084b8c8bd93acb9445af0ef3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0038-0121(00)00003-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,3996,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeesoceps/v_3a34_3ay_3a2000_3ai_3a4_3ap_3a271-284.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Palocsay, Susan W.</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Brookshire, Robert G.</creatorcontrib><title>Predicting criminal recidivism using neural networks</title><title>Socio-economic planning sciences</title><description>Prediction of criminal recidivism has been extensively studied in criminology with a variety of statistical models. This article proposes the use of neural network (NN) models to address the problem of splitting the population into two groups — non-recidivists and eventual recidivists — based on a set of predictor variables. The results from an empirical study of the classification capabilities of NN on a well-known recidivism data set are presented and discussed in comparison with logistic regression. Analysis indicates that NN models are competitive with, and may offer some advantages over, traditional statistical models in this domain.</description><subject>Criminology</subject><subject>forecasting</subject><subject>Mathematical analysis</subject><subject>neural networks</subject><subject>North Carolina</subject><subject>Offenders</subject><subject>prediction</subject><subject>Probability</subject><subject>Recidivism</subject><subject>Regression analysis</subject><subject>Social research</subject><subject>Statistical models</subject><subject>U.S.A</subject><issn>0038-0121</issn><issn>1873-6041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkVtLxDAQhYMouK7-BGGfRB-qk0vT9Elk8cqCgvoc2nSq0e3FpF3Zf2-6lX3dwGRg8p1DckLIKYVLClRevQJwFQFl9BzgAsLiEd8jE6oSHkkQdJ9MtsghOfL-KzBMsHhCxIvDwprO1h8z42xl62w5c2hsYVfWV7PeDyc19i7Ma-x-G_ftj8lBmS09nvz3KXm_u32bP0SL5_vH-c0iMkzxKiolJpDEkAOXSpUpo7LkRZyXJcpEFYWQGeMyByVyZVRepDwzeSpEnJWAgeRTcjb6tq756dF3urLe4HKZ1dj0XnOVMkaF2gnSJOES5ADGI2hc473DUrfh0Zlbawp6CFNvwtRDUhpAb8LUPOieRp3DFs1WhIi-Mdh6vdI84yJs61AsqEKzoYZRO4wSqpkS-rOrgtn1aIYhu5VFp72xWJvwESH5TheN3XGdP9nnlGo</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Palocsay, Susan W.</creator><creator>Wang, Ping</creator><creator>Brookshire, Robert G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20001201</creationdate><title>Predicting criminal recidivism using neural networks</title><author>Palocsay, Susan W. ; Wang, Ping ; Brookshire, Robert G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283m-f6e70750b03688f9216f3d5bffe678dd46a236b084b8c8bd93acb9445af0ef3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Criminology</topic><topic>forecasting</topic><topic>Mathematical analysis</topic><topic>neural networks</topic><topic>North Carolina</topic><topic>Offenders</topic><topic>prediction</topic><topic>Probability</topic><topic>Recidivism</topic><topic>Regression analysis</topic><topic>Social research</topic><topic>Statistical models</topic><topic>U.S.A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palocsay, Susan W.</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Brookshire, Robert G.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Socio-economic planning sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palocsay, Susan W.</au><au>Wang, Ping</au><au>Brookshire, Robert G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting criminal recidivism using neural networks</atitle><jtitle>Socio-economic planning sciences</jtitle><date>2000-12-01</date><risdate>2000</risdate><volume>34</volume><issue>4</issue><spage>271</spage><epage>284</epage><pages>271-284</pages><issn>0038-0121</issn><eissn>1873-6041</eissn><abstract>Prediction of criminal recidivism has been extensively studied in criminology with a variety of statistical models. This article proposes the use of neural network (NN) models to address the problem of splitting the population into two groups — non-recidivists and eventual recidivists — based on a set of predictor variables. The results from an empirical study of the classification capabilities of NN on a well-known recidivism data set are presented and discussed in comparison with logistic regression. Analysis indicates that NN models are competitive with, and may offer some advantages over, traditional statistical models in this domain.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0038-0121(00)00003-3</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-0121
ispartof Socio-economic planning sciences, 2000-12, Vol.34 (4), p.271-284
issn 0038-0121
1873-6041
language eng
recordid cdi_proquest_miscellaneous_38922148
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Criminology
forecasting
Mathematical analysis
neural networks
North Carolina
Offenders
prediction
Probability
Recidivism
Regression analysis
Social research
Statistical models
U.S.A
title Predicting criminal recidivism using neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20criminal%20recidivism%20using%20neural%20networks&rft.jtitle=Socio-economic%20planning%20sciences&rft.au=Palocsay,%20Susan%20W.&rft.date=2000-12-01&rft.volume=34&rft.issue=4&rft.spage=271&rft.epage=284&rft.pages=271-284&rft.issn=0038-0121&rft.eissn=1873-6041&rft_id=info:doi/10.1016/S0038-0121(00)00003-3&rft_dat=%3Cproquest_cross%3E38922148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17736068&rft_id=info:pmid/&rft_els_id=S0038012100000033&rfr_iscdi=true