Goodness of fit of generalized linear models to sparse data

We derive approximations to the first three moments of the conditional distribution of the deviance statistic, for testing the goodness of fit of generalized linear models with non-canonical links, by using an estimating equations approach, for data that are extensive but sparse. A supplementary est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2000, Vol.62 (2), p.323-333
Hauptverfasser: Paul, S. R., Deng, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 2
container_start_page 323
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 62
creator Paul, S. R.
Deng, D.
description We derive approximations to the first three moments of the conditional distribution of the deviance statistic, for testing the goodness of fit of generalized linear models with non-canonical links, by using an estimating equations approach, for data that are extensive but sparse. A supplementary estimating equation is proposed from which the modified deviance statistic is obtained. An application of a modified deviance statistic is shown to binomial and Poisson data. We also conduct a performance study of the modified Pearson statistic derived by Farrington and the modified deviance statistic derived in this paper, in terms of size and power, through a small scale simulation experiment. Both statistics are shown to perform well in terms of size. The deviance statistic, however, shows an advantage of power. Two examples are given.
doi_str_mv 10.1111/1467-9868.00234
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38901466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3088862</jstor_id><sourcerecordid>3088862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4704-1788ebb86029a85c98d1971bea9d479b09ce9f377e5e14668bbd126a0ad997ee3</originalsourceid><addsrcrecordid>eNqFUU1v1DAQjRBIlJYzFw45IG5p_ZH1hzhBBQvVCgQt4mhNkgl48cbBk0KXX4_TVMuxI41n5Hlv9PSmKJ5xdspznPFa6coaZU4ZE7J-UBwdfh7mXipb6ZqLx8UToi3LobQ8Kl6tY-wGJCpjX_Z-mst3HDBB8H-xK4MfEFK5ix0GKqdY0giJsOxggpPiUQ-B8OldPS6-vnt7df6-2nxafzh_vanaWrO64toYbBqjmLBgVq01HbeaNwi2q7VtmG3R9lJrXGGWrEzTdFwoYNBZqxHlcfFy2Tum-OsaaXI7Ty2GAAPGa3LSWDYTM_BsAbYpEiXs3Zj8DtLeceZmk9xsiZstcbcmZcbFwkg4YnuANwG2MRE17reToER-9jlFdi0XP7c5x5xSSCeldD-mXV724k4nUAuhTzC0nv5rkEzXlmVYvcD--ID7-yS6L5eXbxapzxfalqaYDjTJjDFK5HG1jD1NeHMYQ_rp8qH1yn37uHYX9kroz4a5jfwHyUal9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38901466</pqid></control><display><type>article</type><title>Goodness of fit of generalized linear models to sparse data</title><source>Wiley Online Library</source><source>JSTOR Mathematics and Statistics</source><source>RePEc</source><source>JSTOR</source><source>Oxford Journals</source><source>EBSCOhost Business Source Complete</source><creator>Paul, S. R. ; Deng, D.</creator><creatorcontrib>Paul, S. R. ; Deng, D.</creatorcontrib><description>We derive approximations to the first three moments of the conditional distribution of the deviance statistic, for testing the goodness of fit of generalized linear models with non-canonical links, by using an estimating equations approach, for data that are extensive but sparse. A supplementary estimating equation is proposed from which the modified deviance statistic is obtained. An application of a modified deviance statistic is shown to binomial and Poisson data. We also conduct a performance study of the modified Pearson statistic derived by Farrington and the modified deviance statistic derived in this paper, in terms of size and power, through a small scale simulation experiment. Both statistics are shown to perform well in terms of size. The deviance statistic, however, shows an advantage of power. Two examples are given.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/1467-9868.00234</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>Approximation ; Binomial and Poisson linear model ; Binomials ; Data analysis ; Degrees of freedom ; Deviance ; Deviance statistic ; Distribution ; Exact sciences and technology ; Generalized linear model ; Goodness of fit ; Linear inference, regression ; Linear models ; Linear regression ; Mathematical moments ; Mathematics ; P values ; Power ; Probability and statistics ; Probability theory and stochastic processes ; Regression analysis ; Sciences and techniques of general use ; Size ; Sparse data ; Statistical models ; Statistical variance ; Statistics ; Stochastic analysis</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2000, Vol.62 (2), p.323-333</ispartof><rights>Copyright 2000 The Royal Statistical Society</rights><rights>2000 Royal Statistical Society</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4704-1788ebb86029a85c98d1971bea9d479b09ce9f377e5e14668bbd126a0ad997ee3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3088862$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3088862$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,3993,4009,27902,27903,27904,45553,45554,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1307490$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a62_3ay_3a2000_3ai_3a2_3ap_3a323-333.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, S. R.</creatorcontrib><creatorcontrib>Deng, D.</creatorcontrib><title>Goodness of fit of generalized linear models to sparse data</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>We derive approximations to the first three moments of the conditional distribution of the deviance statistic, for testing the goodness of fit of generalized linear models with non-canonical links, by using an estimating equations approach, for data that are extensive but sparse. A supplementary estimating equation is proposed from which the modified deviance statistic is obtained. An application of a modified deviance statistic is shown to binomial and Poisson data. We also conduct a performance study of the modified Pearson statistic derived by Farrington and the modified deviance statistic derived in this paper, in terms of size and power, through a small scale simulation experiment. Both statistics are shown to perform well in terms of size. The deviance statistic, however, shows an advantage of power. Two examples are given.</description><subject>Approximation</subject><subject>Binomial and Poisson linear model</subject><subject>Binomials</subject><subject>Data analysis</subject><subject>Degrees of freedom</subject><subject>Deviance</subject><subject>Deviance statistic</subject><subject>Distribution</subject><subject>Exact sciences and technology</subject><subject>Generalized linear model</subject><subject>Goodness of fit</subject><subject>Linear inference, regression</subject><subject>Linear models</subject><subject>Linear regression</subject><subject>Mathematical moments</subject><subject>Mathematics</subject><subject>P values</subject><subject>Power</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Size</subject><subject>Sparse data</subject><subject>Statistical models</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Stochastic analysis</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUU1v1DAQjRBIlJYzFw45IG5p_ZH1hzhBBQvVCgQt4mhNkgl48cbBk0KXX4_TVMuxI41n5Hlv9PSmKJ5xdspznPFa6coaZU4ZE7J-UBwdfh7mXipb6ZqLx8UToi3LobQ8Kl6tY-wGJCpjX_Z-mst3HDBB8H-xK4MfEFK5ix0GKqdY0giJsOxggpPiUQ-B8OldPS6-vnt7df6-2nxafzh_vanaWrO64toYbBqjmLBgVq01HbeaNwi2q7VtmG3R9lJrXGGWrEzTdFwoYNBZqxHlcfFy2Tum-OsaaXI7Ty2GAAPGa3LSWDYTM_BsAbYpEiXs3Zj8DtLeceZmk9xsiZstcbcmZcbFwkg4YnuANwG2MRE17reToER-9jlFdi0XP7c5x5xSSCeldD-mXV724k4nUAuhTzC0nv5rkEzXlmVYvcD--ID7-yS6L5eXbxapzxfalqaYDjTJjDFK5HG1jD1NeHMYQ_rp8qH1yn37uHYX9kroz4a5jfwHyUal9A</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Paul, S. R.</creator><creator>Deng, D.</creator><general>Blackwell Publishers Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>2000</creationdate><title>Goodness of fit of generalized linear models to sparse data</title><author>Paul, S. R. ; Deng, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4704-1788ebb86029a85c98d1971bea9d479b09ce9f377e5e14668bbd126a0ad997ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Approximation</topic><topic>Binomial and Poisson linear model</topic><topic>Binomials</topic><topic>Data analysis</topic><topic>Degrees of freedom</topic><topic>Deviance</topic><topic>Deviance statistic</topic><topic>Distribution</topic><topic>Exact sciences and technology</topic><topic>Generalized linear model</topic><topic>Goodness of fit</topic><topic>Linear inference, regression</topic><topic>Linear models</topic><topic>Linear regression</topic><topic>Mathematical moments</topic><topic>Mathematics</topic><topic>P values</topic><topic>Power</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Size</topic><topic>Sparse data</topic><topic>Statistical models</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Stochastic analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, S. R.</creatorcontrib><creatorcontrib>Deng, D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, S. R.</au><au>Deng, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Goodness of fit of generalized linear models to sparse data</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2000</date><risdate>2000</risdate><volume>62</volume><issue>2</issue><spage>323</spage><epage>333</epage><pages>323-333</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>We derive approximations to the first three moments of the conditional distribution of the deviance statistic, for testing the goodness of fit of generalized linear models with non-canonical links, by using an estimating equations approach, for data that are extensive but sparse. A supplementary estimating equation is proposed from which the modified deviance statistic is obtained. An application of a modified deviance statistic is shown to binomial and Poisson data. We also conduct a performance study of the modified Pearson statistic derived by Farrington and the modified deviance statistic derived in this paper, in terms of size and power, through a small scale simulation experiment. Both statistics are shown to perform well in terms of size. The deviance statistic, however, shows an advantage of power. Two examples are given.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-9868.00234</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2000, Vol.62 (2), p.323-333
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_miscellaneous_38901466
source Wiley Online Library; JSTOR Mathematics and Statistics; RePEc; JSTOR; Oxford Journals; EBSCOhost Business Source Complete
subjects Approximation
Binomial and Poisson linear model
Binomials
Data analysis
Degrees of freedom
Deviance
Deviance statistic
Distribution
Exact sciences and technology
Generalized linear model
Goodness of fit
Linear inference, regression
Linear models
Linear regression
Mathematical moments
Mathematics
P values
Power
Probability and statistics
Probability theory and stochastic processes
Regression analysis
Sciences and techniques of general use
Size
Sparse data
Statistical models
Statistical variance
Statistics
Stochastic analysis
title Goodness of fit of generalized linear models to sparse data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Goodness%20of%20fit%20of%20generalized%20linear%20models%20to%20sparse%20data&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Paul,%20S.%20R.&rft.date=2000&rft.volume=62&rft.issue=2&rft.spage=323&rft.epage=333&rft.pages=323-333&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/1467-9868.00234&rft_dat=%3Cjstor_proqu%3E3088862%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38901466&rft_id=info:pmid/&rft_jstor_id=3088862&rfr_iscdi=true