Risk-Sensitive Control and an Optimal Investment Model

We consider an optimal investment model in which the goal is to maximize the long‐term growth rate of expected utility of wealth. In the model, the mean returns of the securities are explicitly affected by the underlying economic factors. The utility function is HARA. The problem is reformulated as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical finance 2000-04, Vol.10 (2), p.197-213
Hauptverfasser: Fleming, W. H., Sheu, S. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 2
container_start_page 197
container_title Mathematical finance
container_volume 10
creator Fleming, W. H.
Sheu, S. J.
description We consider an optimal investment model in which the goal is to maximize the long‐term growth rate of expected utility of wealth. In the model, the mean returns of the securities are explicitly affected by the underlying economic factors. The utility function is HARA. The problem is reformulated as an infinite time horizon risk‐sensitive control problem. We study the dynamic programming equation associated with this control problem and derive some consequences of the investment problem.
doi_str_mv 10.1111/1467-9965.00089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38882215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38882215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6169-51dadecf9656d6d1961dd4b147420223428c7da929218bb7a6451c19524a8a893</originalsourceid><addsrcrecordid>eNqFULluGzEUJIwEiGK7Trtw4W5tXsujFORLiQ_YSZDygVpSEKW9Qq6U6O_NzRoq3ITA4BHkzHA4CH0h-IKkdUm4kLnWorjAGCt9hCaHkw9ogrXAORFUfkKfY1wnCudcTpB48XGTf3dN9L3fuWzWNn1oq8w0NiF76npfmyqbNzsX-9o1ffbQWledoI9LU0V3-jaP0c-b6x-zu_z-6XY-m97npSBC5wWxxrpymTIIKyzRgljLF4RLTjGljFNVSms01ZSoxUIawQtSEl1QbpRRmh2j89G3C-3vbYoAtY-lqyrTuHYbgSmlKCVFIp69I67bbWhSNqAMY4oVp4l0OZLK0MYY3BK6kL4X9kAwDCXCUBkMlcG_EpPi66gIrnPlgb6oTG361dLDDphJYmb2CTSJ0vDDNqEb7rQEShis-jqZ8dHsj6_c_n9vw8P0Zj5myEeZj737e5CZsAEhmSzg1-MtXKlv5PnuRYJgrzKQmMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230020842</pqid></control><display><type>article</type><title>Risk-Sensitive Control and an Optimal Investment Model</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Fleming, W. H. ; Sheu, S. J.</creator><creatorcontrib>Fleming, W. H. ; Sheu, S. J.</creatorcontrib><description>We consider an optimal investment model in which the goal is to maximize the long‐term growth rate of expected utility of wealth. In the model, the mean returns of the securities are explicitly affected by the underlying economic factors. The utility function is HARA. The problem is reformulated as an infinite time horizon risk‐sensitive control problem. We study the dynamic programming equation associated with this control problem and derive some consequences of the investment problem.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/1467-9965.00089</identifier><language>eng</language><publisher>Boston, USA and Oxford, UK: Blackwell Publishers Inc</publisher><subject>Dynamic programming ; dynamic programming equation ; Economic models ; Expected utility ; Investment ; Investment policy ; long-term growth rate ; Mathematical economics ; Mathematical methods ; Mathematical models ; optimal investment model ; Optimization ; Riccati equation ; Risk ; risk-sensitive stochastic control ; Securities issues ; Studies ; Utility functions</subject><ispartof>Mathematical finance, 2000-04, Vol.10 (2), p.197-213</ispartof><rights>Blackwell Publishers, Inc.</rights><rights>Copyright Blackwell Publishers Inc. Apr 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6169-51dadecf9656d6d1961dd4b147420223428c7da929218bb7a6451c19524a8a893</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1467-9965.00089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1467-9965.00089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,3994,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blamathfi/v_3a10_3ay_3a2000_3ai_3a2_3ap_3a197-213.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleming, W. H.</creatorcontrib><creatorcontrib>Sheu, S. J.</creatorcontrib><title>Risk-Sensitive Control and an Optimal Investment Model</title><title>Mathematical finance</title><description>We consider an optimal investment model in which the goal is to maximize the long‐term growth rate of expected utility of wealth. In the model, the mean returns of the securities are explicitly affected by the underlying economic factors. The utility function is HARA. The problem is reformulated as an infinite time horizon risk‐sensitive control problem. We study the dynamic programming equation associated with this control problem and derive some consequences of the investment problem.</description><subject>Dynamic programming</subject><subject>dynamic programming equation</subject><subject>Economic models</subject><subject>Expected utility</subject><subject>Investment</subject><subject>Investment policy</subject><subject>long-term growth rate</subject><subject>Mathematical economics</subject><subject>Mathematical methods</subject><subject>Mathematical models</subject><subject>optimal investment model</subject><subject>Optimization</subject><subject>Riccati equation</subject><subject>Risk</subject><subject>risk-sensitive stochastic control</subject><subject>Securities issues</subject><subject>Studies</subject><subject>Utility functions</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFULluGzEUJIwEiGK7Trtw4W5tXsujFORLiQ_YSZDygVpSEKW9Qq6U6O_NzRoq3ITA4BHkzHA4CH0h-IKkdUm4kLnWorjAGCt9hCaHkw9ogrXAORFUfkKfY1wnCudcTpB48XGTf3dN9L3fuWzWNn1oq8w0NiF76npfmyqbNzsX-9o1ffbQWledoI9LU0V3-jaP0c-b6x-zu_z-6XY-m97npSBC5wWxxrpymTIIKyzRgljLF4RLTjGljFNVSms01ZSoxUIawQtSEl1QbpRRmh2j89G3C-3vbYoAtY-lqyrTuHYbgSmlKCVFIp69I67bbWhSNqAMY4oVp4l0OZLK0MYY3BK6kL4X9kAwDCXCUBkMlcG_EpPi66gIrnPlgb6oTG361dLDDphJYmb2CTSJ0vDDNqEb7rQEShis-jqZ8dHsj6_c_n9vw8P0Zj5myEeZj737e5CZsAEhmSzg1-MtXKlv5PnuRYJgrzKQmMQ</recordid><startdate>200004</startdate><enddate>200004</enddate><creator>Fleming, W. H.</creator><creator>Sheu, S. J.</creator><general>Blackwell Publishers Inc</general><general>Wiley Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>200004</creationdate><title>Risk-Sensitive Control and an Optimal Investment Model</title><author>Fleming, W. H. ; Sheu, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6169-51dadecf9656d6d1961dd4b147420223428c7da929218bb7a6451c19524a8a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Dynamic programming</topic><topic>dynamic programming equation</topic><topic>Economic models</topic><topic>Expected utility</topic><topic>Investment</topic><topic>Investment policy</topic><topic>long-term growth rate</topic><topic>Mathematical economics</topic><topic>Mathematical methods</topic><topic>Mathematical models</topic><topic>optimal investment model</topic><topic>Optimization</topic><topic>Riccati equation</topic><topic>Risk</topic><topic>risk-sensitive stochastic control</topic><topic>Securities issues</topic><topic>Studies</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, W. H.</creatorcontrib><creatorcontrib>Sheu, S. J.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, W. H.</au><au>Sheu, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk-Sensitive Control and an Optimal Investment Model</atitle><jtitle>Mathematical finance</jtitle><date>2000-04</date><risdate>2000</risdate><volume>10</volume><issue>2</issue><spage>197</spage><epage>213</epage><pages>197-213</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>We consider an optimal investment model in which the goal is to maximize the long‐term growth rate of expected utility of wealth. In the model, the mean returns of the securities are explicitly affected by the underlying economic factors. The utility function is HARA. The problem is reformulated as an infinite time horizon risk‐sensitive control problem. We study the dynamic programming equation associated with this control problem and derive some consequences of the investment problem.</abstract><cop>Boston, USA and Oxford, UK</cop><pub>Blackwell Publishers Inc</pub><doi>10.1111/1467-9965.00089</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1627
ispartof Mathematical finance, 2000-04, Vol.10 (2), p.197-213
issn 0960-1627
1467-9965
language eng
recordid cdi_proquest_miscellaneous_38882215
source RePEc; Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects Dynamic programming
dynamic programming equation
Economic models
Expected utility
Investment
Investment policy
long-term growth rate
Mathematical economics
Mathematical methods
Mathematical models
optimal investment model
Optimization
Riccati equation
Risk
risk-sensitive stochastic control
Securities issues
Studies
Utility functions
title Risk-Sensitive Control and an Optimal Investment Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk-Sensitive%20Control%20and%20an%20Optimal%20Investment%20Model&rft.jtitle=Mathematical%20finance&rft.au=Fleming,%20W.%20H.&rft.date=2000-04&rft.volume=10&rft.issue=2&rft.spage=197&rft.epage=213&rft.pages=197-213&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/1467-9965.00089&rft_dat=%3Cproquest_cross%3E38882215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230020842&rft_id=info:pmid/&rfr_iscdi=true