Risk-Sensitive Control and an Optimal Investment Model
We consider an optimal investment model in which the goal is to maximize the long‐term growth rate of expected utility of wealth. In the model, the mean returns of the securities are explicitly affected by the underlying economic factors. The utility function is HARA. The problem is reformulated as...
Gespeichert in:
Veröffentlicht in: | Mathematical finance 2000-04, Vol.10 (2), p.197-213 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | 2 |
container_start_page | 197 |
container_title | Mathematical finance |
container_volume | 10 |
creator | Fleming, W. H. Sheu, S. J. |
description | We consider an optimal investment model in which the goal is to maximize the long‐term growth rate of expected utility of wealth. In the model, the mean returns of the securities are explicitly affected by the underlying economic factors. The utility function is HARA. The problem is reformulated as an infinite time horizon risk‐sensitive control problem. We study the dynamic programming equation associated with this control problem and derive some consequences of the investment problem. |
doi_str_mv | 10.1111/1467-9965.00089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38882215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38882215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6169-51dadecf9656d6d1961dd4b147420223428c7da929218bb7a6451c19524a8a893</originalsourceid><addsrcrecordid>eNqFULluGzEUJIwEiGK7Trtw4W5tXsujFORLiQ_YSZDygVpSEKW9Qq6U6O_NzRoq3ITA4BHkzHA4CH0h-IKkdUm4kLnWorjAGCt9hCaHkw9ogrXAORFUfkKfY1wnCudcTpB48XGTf3dN9L3fuWzWNn1oq8w0NiF76npfmyqbNzsX-9o1ffbQWledoI9LU0V3-jaP0c-b6x-zu_z-6XY-m97npSBC5wWxxrpymTIIKyzRgljLF4RLTjGljFNVSms01ZSoxUIawQtSEl1QbpRRmh2j89G3C-3vbYoAtY-lqyrTuHYbgSmlKCVFIp69I67bbWhSNqAMY4oVp4l0OZLK0MYY3BK6kL4X9kAwDCXCUBkMlcG_EpPi66gIrnPlgb6oTG361dLDDphJYmb2CTSJ0vDDNqEb7rQEShis-jqZ8dHsj6_c_n9vw8P0Zj5myEeZj737e5CZsAEhmSzg1-MtXKlv5PnuRYJgrzKQmMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230020842</pqid></control><display><type>article</type><title>Risk-Sensitive Control and an Optimal Investment Model</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Fleming, W. H. ; Sheu, S. J.</creator><creatorcontrib>Fleming, W. H. ; Sheu, S. J.</creatorcontrib><description>We consider an optimal investment model in which the goal is to maximize the long‐term growth rate of expected utility of wealth. In the model, the mean returns of the securities are explicitly affected by the underlying economic factors. The utility function is HARA. The problem is reformulated as an infinite time horizon risk‐sensitive control problem. We study the dynamic programming equation associated with this control problem and derive some consequences of the investment problem.</description><identifier>ISSN: 0960-1627</identifier><identifier>EISSN: 1467-9965</identifier><identifier>DOI: 10.1111/1467-9965.00089</identifier><language>eng</language><publisher>Boston, USA and Oxford, UK: Blackwell Publishers Inc</publisher><subject>Dynamic programming ; dynamic programming equation ; Economic models ; Expected utility ; Investment ; Investment policy ; long-term growth rate ; Mathematical economics ; Mathematical methods ; Mathematical models ; optimal investment model ; Optimization ; Riccati equation ; Risk ; risk-sensitive stochastic control ; Securities issues ; Studies ; Utility functions</subject><ispartof>Mathematical finance, 2000-04, Vol.10 (2), p.197-213</ispartof><rights>Blackwell Publishers, Inc.</rights><rights>Copyright Blackwell Publishers Inc. Apr 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6169-51dadecf9656d6d1961dd4b147420223428c7da929218bb7a6451c19524a8a893</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1467-9965.00089$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1467-9965.00089$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,3994,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blamathfi/v_3a10_3ay_3a2000_3ai_3a2_3ap_3a197-213.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleming, W. H.</creatorcontrib><creatorcontrib>Sheu, S. J.</creatorcontrib><title>Risk-Sensitive Control and an Optimal Investment Model</title><title>Mathematical finance</title><description>We consider an optimal investment model in which the goal is to maximize the long‐term growth rate of expected utility of wealth. In the model, the mean returns of the securities are explicitly affected by the underlying economic factors. The utility function is HARA. The problem is reformulated as an infinite time horizon risk‐sensitive control problem. We study the dynamic programming equation associated with this control problem and derive some consequences of the investment problem.</description><subject>Dynamic programming</subject><subject>dynamic programming equation</subject><subject>Economic models</subject><subject>Expected utility</subject><subject>Investment</subject><subject>Investment policy</subject><subject>long-term growth rate</subject><subject>Mathematical economics</subject><subject>Mathematical methods</subject><subject>Mathematical models</subject><subject>optimal investment model</subject><subject>Optimization</subject><subject>Riccati equation</subject><subject>Risk</subject><subject>risk-sensitive stochastic control</subject><subject>Securities issues</subject><subject>Studies</subject><subject>Utility functions</subject><issn>0960-1627</issn><issn>1467-9965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFULluGzEUJIwEiGK7Trtw4W5tXsujFORLiQ_YSZDygVpSEKW9Qq6U6O_NzRoq3ITA4BHkzHA4CH0h-IKkdUm4kLnWorjAGCt9hCaHkw9ogrXAORFUfkKfY1wnCudcTpB48XGTf3dN9L3fuWzWNn1oq8w0NiF76npfmyqbNzsX-9o1ffbQWledoI9LU0V3-jaP0c-b6x-zu_z-6XY-m97npSBC5wWxxrpymTIIKyzRgljLF4RLTjGljFNVSms01ZSoxUIawQtSEl1QbpRRmh2j89G3C-3vbYoAtY-lqyrTuHYbgSmlKCVFIp69I67bbWhSNqAMY4oVp4l0OZLK0MYY3BK6kL4X9kAwDCXCUBkMlcG_EpPi66gIrnPlgb6oTG361dLDDphJYmb2CTSJ0vDDNqEb7rQEShis-jqZ8dHsj6_c_n9vw8P0Zj5myEeZj737e5CZsAEhmSzg1-MtXKlv5PnuRYJgrzKQmMQ</recordid><startdate>200004</startdate><enddate>200004</enddate><creator>Fleming, W. H.</creator><creator>Sheu, S. J.</creator><general>Blackwell Publishers Inc</general><general>Wiley Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>200004</creationdate><title>Risk-Sensitive Control and an Optimal Investment Model</title><author>Fleming, W. H. ; Sheu, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6169-51dadecf9656d6d1961dd4b147420223428c7da929218bb7a6451c19524a8a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Dynamic programming</topic><topic>dynamic programming equation</topic><topic>Economic models</topic><topic>Expected utility</topic><topic>Investment</topic><topic>Investment policy</topic><topic>long-term growth rate</topic><topic>Mathematical economics</topic><topic>Mathematical methods</topic><topic>Mathematical models</topic><topic>optimal investment model</topic><topic>Optimization</topic><topic>Riccati equation</topic><topic>Risk</topic><topic>risk-sensitive stochastic control</topic><topic>Securities issues</topic><topic>Studies</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, W. H.</creatorcontrib><creatorcontrib>Sheu, S. J.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, W. H.</au><au>Sheu, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk-Sensitive Control and an Optimal Investment Model</atitle><jtitle>Mathematical finance</jtitle><date>2000-04</date><risdate>2000</risdate><volume>10</volume><issue>2</issue><spage>197</spage><epage>213</epage><pages>197-213</pages><issn>0960-1627</issn><eissn>1467-9965</eissn><abstract>We consider an optimal investment model in which the goal is to maximize the long‐term growth rate of expected utility of wealth. In the model, the mean returns of the securities are explicitly affected by the underlying economic factors. The utility function is HARA. The problem is reformulated as an infinite time horizon risk‐sensitive control problem. We study the dynamic programming equation associated with this control problem and derive some consequences of the investment problem.</abstract><cop>Boston, USA and Oxford, UK</cop><pub>Blackwell Publishers Inc</pub><doi>10.1111/1467-9965.00089</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1627 |
ispartof | Mathematical finance, 2000-04, Vol.10 (2), p.197-213 |
issn | 0960-1627 1467-9965 |
language | eng |
recordid | cdi_proquest_miscellaneous_38882215 |
source | RePEc; Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Dynamic programming dynamic programming equation Economic models Expected utility Investment Investment policy long-term growth rate Mathematical economics Mathematical methods Mathematical models optimal investment model Optimization Riccati equation Risk risk-sensitive stochastic control Securities issues Studies Utility functions |
title | Risk-Sensitive Control and an Optimal Investment Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk-Sensitive%20Control%20and%20an%20Optimal%20Investment%20Model&rft.jtitle=Mathematical%20finance&rft.au=Fleming,%20W.%20H.&rft.date=2000-04&rft.volume=10&rft.issue=2&rft.spage=197&rft.epage=213&rft.pages=197-213&rft.issn=0960-1627&rft.eissn=1467-9965&rft_id=info:doi/10.1111/1467-9965.00089&rft_dat=%3Cproquest_cross%3E38882215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230020842&rft_id=info:pmid/&rfr_iscdi=true |