BVAR as a category management tool: An illustration and comparison with alternative techniques
Category management—a relatively new function in marketing—involves large‐scale, real‐time forecasting of multiple data series in complex environments. In this paper, we illustrate how Bayesian Vector Auto regression (BVAR) fulfils the category manager's decision‐support requirements by providi...
Gespeichert in:
Veröffentlicht in: | Journal of forecasting 1995-05, Vol.14 (3), p.181-199 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 3 |
container_start_page | 181 |
container_title | Journal of forecasting |
container_volume | 14 |
creator | Curry, David J. Divakar, Suresh Mathur, Sharat K. Whiteman, Charles H. |
description | Category management—a relatively new function in marketing—involves large‐scale, real‐time forecasting of multiple data series in complex environments. In this paper, we illustrate how Bayesian Vector Auto regression (BVAR) fulfils the category manager's decision‐support requirements by providing accurate forecasts of a category's state variables (prices, volumes and advertising levels), incorporating management interventions (merchandising events such as end‐aisle displays), and revealing competitive dynamics through impulse response analyses. Using 124 weeks of point‐of‐sale scanner data comprising 31 variables for four brands, we compare the out‐of‐sample forecasts from BVAR to forecasts from exponential smoothing, univariate and multivariate Box‐Jenkins transfer function analyses, and multivariate ARMA models. Theil U's indicate that BVAR forecasts are superior to those from alternate approaches. In large‐scale forecasting applications, BVAR's ease of identification and parsimonious use of degrees of freedom are particularly valuable. |
doi_str_mv | 10.1002/for.3980140304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38874123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38874123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4134-4b1264306432fd482efd22583fc38481ed2fa511ca9cbf846deb0a670060e4733</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMoOK5ePQcFbz1WJZlO4m1cnV1hcXHxCw-GTDq9mzXdGZOM6_x7exhRFMRDKEI9T1XBS8hDhDkCsKd9ynOuFaAADuIWmSFo3SDHj7fJDJiUTdtqfpfcK-UaAKRCNiOfn79fXlBbqKXOVn-Z8o4OdrSXfvBjpTWl-IwuRxpi3JaabQ1ppHbsqEvDxuZQpu9NqFfUxurzOPW_eVq9uxrD160v98md3sbiH_ysR-Td6uXb49Pm7Pzk1fHyrHECuWjEGlkrOEyP9Z1QzPcdYwvFe8eVUOg71tsForParXsl2s6vwbYSoAUvJOdH5Mlh7ian_d5qhlCcj9GOPm2L4UpJgWwPPvoLvE7b6e5YDEPNGHK-hx7_C0IOCkFozSZqfqBcTqVk35tNDoPNO4Ng9omYKRHzO5FJ0AfhJkS_-w9tVucXf7jNwQ2l-u-_XJu_mFZyuTAfXp-YUybhzacXK6P4D0YFnRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1308104992</pqid></control><display><type>article</type><title>BVAR as a category management tool: An illustration and comparison with alternative techniques</title><source>Business Source Complete</source><source>Periodicals Index Online</source><creator>Curry, David J. ; Divakar, Suresh ; Mathur, Sharat K. ; Whiteman, Charles H.</creator><creatorcontrib>Curry, David J. ; Divakar, Suresh ; Mathur, Sharat K. ; Whiteman, Charles H.</creatorcontrib><description>Category management—a relatively new function in marketing—involves large‐scale, real‐time forecasting of multiple data series in complex environments. In this paper, we illustrate how Bayesian Vector Auto regression (BVAR) fulfils the category manager's decision‐support requirements by providing accurate forecasts of a category's state variables (prices, volumes and advertising levels), incorporating management interventions (merchandising events such as end‐aisle displays), and revealing competitive dynamics through impulse response analyses. Using 124 weeks of point‐of‐sale scanner data comprising 31 variables for four brands, we compare the out‐of‐sample forecasts from BVAR to forecasts from exponential smoothing, univariate and multivariate Box‐Jenkins transfer function analyses, and multivariate ARMA models. Theil U's indicate that BVAR forecasts are superior to those from alternate approaches. In large‐scale forecasting applications, BVAR's ease of identification and parsimonious use of degrees of freedom are particularly valuable.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.3980140304</identifier><identifier>CODEN: JOFODV</identifier><language>eng</language><publisher>Chichester: John Wiley & Sons, Ltd</publisher><subject>Bayesian analysis ; Beyesian vector aut oregression ; Category management ; Comparative analysis ; competitive dynamics ; dynamic conditional forecasts ; Economic forecasting ; Economic models ; Forecasts ; Management ; multivariate time series modeling ; state-space models ; Studies</subject><ispartof>Journal of forecasting, 1995-05, Vol.14 (3), p.181-199</ispartof><rights>Copyright © 1995 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Periodicals Inc. May 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4134-4b1264306432fd482efd22583fc38481ed2fa511ca9cbf846deb0a670060e4733</citedby><cites>FETCH-LOGICAL-c4134-4b1264306432fd482efd22583fc38481ed2fa511ca9cbf846deb0a670060e4733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27869,27924,27925</link.rule.ids></links><search><creatorcontrib>Curry, David J.</creatorcontrib><creatorcontrib>Divakar, Suresh</creatorcontrib><creatorcontrib>Mathur, Sharat K.</creatorcontrib><creatorcontrib>Whiteman, Charles H.</creatorcontrib><title>BVAR as a category management tool: An illustration and comparison with alternative techniques</title><title>Journal of forecasting</title><addtitle>J. Forecast</addtitle><description>Category management—a relatively new function in marketing—involves large‐scale, real‐time forecasting of multiple data series in complex environments. In this paper, we illustrate how Bayesian Vector Auto regression (BVAR) fulfils the category manager's decision‐support requirements by providing accurate forecasts of a category's state variables (prices, volumes and advertising levels), incorporating management interventions (merchandising events such as end‐aisle displays), and revealing competitive dynamics through impulse response analyses. Using 124 weeks of point‐of‐sale scanner data comprising 31 variables for four brands, we compare the out‐of‐sample forecasts from BVAR to forecasts from exponential smoothing, univariate and multivariate Box‐Jenkins transfer function analyses, and multivariate ARMA models. Theil U's indicate that BVAR forecasts are superior to those from alternate approaches. In large‐scale forecasting applications, BVAR's ease of identification and parsimonious use of degrees of freedom are particularly valuable.</description><subject>Bayesian analysis</subject><subject>Beyesian vector aut oregression</subject><subject>Category management</subject><subject>Comparative analysis</subject><subject>competitive dynamics</subject><subject>dynamic conditional forecasts</subject><subject>Economic forecasting</subject><subject>Economic models</subject><subject>Forecasts</subject><subject>Management</subject><subject>multivariate time series modeling</subject><subject>state-space models</subject><subject>Studies</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqFkU2LFDEQhoMoOK5ePQcFbz1WJZlO4m1cnV1hcXHxCw-GTDq9mzXdGZOM6_x7exhRFMRDKEI9T1XBS8hDhDkCsKd9ynOuFaAADuIWmSFo3SDHj7fJDJiUTdtqfpfcK-UaAKRCNiOfn79fXlBbqKXOVn-Z8o4OdrSXfvBjpTWl-IwuRxpi3JaabQ1ppHbsqEvDxuZQpu9NqFfUxurzOPW_eVq9uxrD160v98md3sbiH_ysR-Td6uXb49Pm7Pzk1fHyrHECuWjEGlkrOEyP9Z1QzPcdYwvFe8eVUOg71tsForParXsl2s6vwbYSoAUvJOdH5Mlh7ian_d5qhlCcj9GOPm2L4UpJgWwPPvoLvE7b6e5YDEPNGHK-hx7_C0IOCkFozSZqfqBcTqVk35tNDoPNO4Ng9omYKRHzO5FJ0AfhJkS_-w9tVucXf7jNwQ2l-u-_XJu_mFZyuTAfXp-YUybhzacXK6P4D0YFnRo</recordid><startdate>199505</startdate><enddate>199505</enddate><creator>Curry, David J.</creator><creator>Divakar, Suresh</creator><creator>Mathur, Sharat K.</creator><creator>Whiteman, Charles H.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>199505</creationdate><title>BVAR as a category management tool: An illustration and comparison with alternative techniques</title><author>Curry, David J. ; Divakar, Suresh ; Mathur, Sharat K. ; Whiteman, Charles H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4134-4b1264306432fd482efd22583fc38481ed2fa511ca9cbf846deb0a670060e4733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Bayesian analysis</topic><topic>Beyesian vector aut oregression</topic><topic>Category management</topic><topic>Comparative analysis</topic><topic>competitive dynamics</topic><topic>dynamic conditional forecasts</topic><topic>Economic forecasting</topic><topic>Economic models</topic><topic>Forecasts</topic><topic>Management</topic><topic>multivariate time series modeling</topic><topic>state-space models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curry, David J.</creatorcontrib><creatorcontrib>Divakar, Suresh</creatorcontrib><creatorcontrib>Mathur, Sharat K.</creatorcontrib><creatorcontrib>Whiteman, Charles H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curry, David J.</au><au>Divakar, Suresh</au><au>Mathur, Sharat K.</au><au>Whiteman, Charles H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BVAR as a category management tool: An illustration and comparison with alternative techniques</atitle><jtitle>Journal of forecasting</jtitle><addtitle>J. Forecast</addtitle><date>1995-05</date><risdate>1995</risdate><volume>14</volume><issue>3</issue><spage>181</spage><epage>199</epage><pages>181-199</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><coden>JOFODV</coden><abstract>Category management—a relatively new function in marketing—involves large‐scale, real‐time forecasting of multiple data series in complex environments. In this paper, we illustrate how Bayesian Vector Auto regression (BVAR) fulfils the category manager's decision‐support requirements by providing accurate forecasts of a category's state variables (prices, volumes and advertising levels), incorporating management interventions (merchandising events such as end‐aisle displays), and revealing competitive dynamics through impulse response analyses. Using 124 weeks of point‐of‐sale scanner data comprising 31 variables for four brands, we compare the out‐of‐sample forecasts from BVAR to forecasts from exponential smoothing, univariate and multivariate Box‐Jenkins transfer function analyses, and multivariate ARMA models. Theil U's indicate that BVAR forecasts are superior to those from alternate approaches. In large‐scale forecasting applications, BVAR's ease of identification and parsimonious use of degrees of freedom are particularly valuable.</abstract><cop>Chichester</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/for.3980140304</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6693 |
ispartof | Journal of forecasting, 1995-05, Vol.14 (3), p.181-199 |
issn | 0277-6693 1099-131X |
language | eng |
recordid | cdi_proquest_miscellaneous_38874123 |
source | Business Source Complete; Periodicals Index Online |
subjects | Bayesian analysis Beyesian vector aut oregression Category management Comparative analysis competitive dynamics dynamic conditional forecasts Economic forecasting Economic models Forecasts Management multivariate time series modeling state-space models Studies |
title | BVAR as a category management tool: An illustration and comparison with alternative techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BVAR%20as%20a%20category%20management%20tool:%20An%20illustration%20and%20comparison%20with%20alternative%20techniques&rft.jtitle=Journal%20of%20forecasting&rft.au=Curry,%20David%20J.&rft.date=1995-05&rft.volume=14&rft.issue=3&rft.spage=181&rft.epage=199&rft.pages=181-199&rft.issn=0277-6693&rft.eissn=1099-131X&rft.coden=JOFODV&rft_id=info:doi/10.1002/for.3980140304&rft_dat=%3Cproquest_cross%3E38874123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1308104992&rft_id=info:pmid/&rfr_iscdi=true |