A design for testing clinical strategies: biased adaptive within-subject randomization

We propose a method for assigning treatment in clinical trials, called the 'biased coin adaptive within-subject' (BCAWS) design: during the course of follow-up, the subject's response to a treatment is used to influence the future treatment, through a 'biased coin' algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 2000, Vol.163 (1), p.29-38
Hauptverfasser: Lavori, P. W., Dawson, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 29
container_title Journal of the Royal Statistical Society. Series A, Statistics in society
container_volume 163
creator Lavori, P. W.
Dawson, R.
description We propose a method for assigning treatment in clinical trials, called the 'biased coin adaptive within-subject' (BCAWS) design: during the course of follow-up, the subject's response to a treatment is used to influence the future treatment, through a 'biased coin' algorithm. This design results in treatment patterns that are closer to actual clinical practice and may be more acceptable to patients with chronic disease than the usual fixed trial regimens, which often suffer from drop-out and non-adherence. In this work, we show how to use the BCAWS design to compare treatment strategies, and we provide a simple example to illustrate the method.
doi_str_mv 10.1111/1467-985X.00154
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38853218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2680506</jstor_id><sourcerecordid>2680506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5354-f5bc7d367092476e46a19bb9f24a641dceb2705fbbac950d7feb91e42e698ca13</originalsourceid><addsrcrecordid>eNqFUE1v1DAQjRBILIUzFw45IG5p_e2Y26qCbdUKJAq0N8t2Jlsv2SS1vS3Lr8dpquXISOOR3rw3fnpF8RajY5zrBDMhK1Xzm2OEMGfPisUBeV4skBKswkrVL4tXMW7QVFIuip_LsoHo133ZDqFMEJPv16XrfO-d6cqYgkmw9hA_ltabCE1pGjMmfw_lg0-3vq_izm7ApTKYvhm2_o9JfuhfFy9a00V48zSPih-fP30_Pasuv67OT5eXleOUs6rl1smGCokUYVIAEwYra1VLmBEMNw4skYi31hqnOGpkC1ZhYASEqp3B9Kj4MN8dw3C3y-711kcHXWd6GHZR07rmlOA6E09mogtDjAFaPQa_NWGvMdJTfnpKS09p6cf8suJ8VgQYwR3otjObIcRo9L2mBgua331ukgPNw09g7nGCVP5f36ZtvvX-yaaJOdY2Z-V8_GcBE0YIzzQ20x58B_v_OdTfrq6Ws9N3s2wT0xAOMiJqxJHI62pe-5jg92Ftwi8tJJVcX39ZaU4v8PXNGdYr-he-hLGx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38853218</pqid></control><display><type>article</type><title>A design for testing clinical strategies: biased adaptive within-subject randomization</title><source>RePEc</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lavori, P. W. ; Dawson, R.</creator><creatorcontrib>Lavori, P. W. ; Dawson, R.</creatorcontrib><description>We propose a method for assigning treatment in clinical trials, called the 'biased coin adaptive within-subject' (BCAWS) design: during the course of follow-up, the subject's response to a treatment is used to influence the future treatment, through a 'biased coin' algorithm. This design results in treatment patterns that are closer to actual clinical practice and may be more acceptable to patients with chronic disease than the usual fixed trial regimens, which often suffer from drop-out and non-adherence. In this work, we show how to use the BCAWS design to compare treatment strategies, and we provide a simple example to illustrate the method.</description><identifier>ISSN: 0964-1998</identifier><identifier>EISSN: 1467-985X</identifier><identifier>DOI: 10.1111/1467-985X.00154</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>Adaptive randomization ; Algorithms ; Applications ; Clinical trials ; Data imputation ; Decision making ; Depressive disorders ; Design of clinical trials ; Diseases ; Economic sociology ; Exact sciences and technology ; Experiment design ; Health outcomes ; Inference ; Mathematics ; Medical sciences ; Missing data ; Monoamine oxidase inhibitors ; Probability and statistics ; Random allocation ; Sciences and techniques of general use ; Serotonin agents ; Statistics ; Symptoms ; Time-varying treatments</subject><ispartof>Journal of the Royal Statistical Society. Series A, Statistics in society, 2000, Vol.163 (1), p.29-38</ispartof><rights>Copyright 2000 The Royal Statistical Society</rights><rights>2000 Royal Statistical Society</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5354-f5bc7d367092476e46a19bb9f24a641dceb2705fbbac950d7feb91e42e698ca13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2680506$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2680506$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,4008,4024,27923,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1124225$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssa/v_3a163_3ay_3a2000_3ai_3a1_3ap_3a29-38.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lavori, P. W.</creatorcontrib><creatorcontrib>Dawson, R.</creatorcontrib><title>A design for testing clinical strategies: biased adaptive within-subject randomization</title><title>Journal of the Royal Statistical Society. Series A, Statistics in society</title><description>We propose a method for assigning treatment in clinical trials, called the 'biased coin adaptive within-subject' (BCAWS) design: during the course of follow-up, the subject's response to a treatment is used to influence the future treatment, through a 'biased coin' algorithm. This design results in treatment patterns that are closer to actual clinical practice and may be more acceptable to patients with chronic disease than the usual fixed trial regimens, which often suffer from drop-out and non-adherence. In this work, we show how to use the BCAWS design to compare treatment strategies, and we provide a simple example to illustrate the method.</description><subject>Adaptive randomization</subject><subject>Algorithms</subject><subject>Applications</subject><subject>Clinical trials</subject><subject>Data imputation</subject><subject>Decision making</subject><subject>Depressive disorders</subject><subject>Design of clinical trials</subject><subject>Diseases</subject><subject>Economic sociology</subject><subject>Exact sciences and technology</subject><subject>Experiment design</subject><subject>Health outcomes</subject><subject>Inference</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Missing data</subject><subject>Monoamine oxidase inhibitors</subject><subject>Probability and statistics</subject><subject>Random allocation</subject><subject>Sciences and techniques of general use</subject><subject>Serotonin agents</subject><subject>Statistics</subject><subject>Symptoms</subject><subject>Time-varying treatments</subject><issn>0964-1998</issn><issn>1467-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUE1v1DAQjRBILIUzFw45IG5p_e2Y26qCbdUKJAq0N8t2Jlsv2SS1vS3Lr8dpquXISOOR3rw3fnpF8RajY5zrBDMhK1Xzm2OEMGfPisUBeV4skBKswkrVL4tXMW7QVFIuip_LsoHo133ZDqFMEJPv16XrfO-d6cqYgkmw9hA_ltabCE1pGjMmfw_lg0-3vq_izm7ApTKYvhm2_o9JfuhfFy9a00V48zSPih-fP30_Pasuv67OT5eXleOUs6rl1smGCokUYVIAEwYra1VLmBEMNw4skYi31hqnOGpkC1ZhYASEqp3B9Kj4MN8dw3C3y-711kcHXWd6GHZR07rmlOA6E09mogtDjAFaPQa_NWGvMdJTfnpKS09p6cf8suJ8VgQYwR3otjObIcRo9L2mBgua331ukgPNw09g7nGCVP5f36ZtvvX-yaaJOdY2Z-V8_GcBE0YIzzQ20x58B_v_OdTfrq6Ws9N3s2wT0xAOMiJqxJHI62pe-5jg92Ftwi8tJJVcX39ZaU4v8PXNGdYr-he-hLGx</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Lavori, P. W.</creator><creator>Dawson, R.</creator><general>Blackwell Publishers Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>2000</creationdate><title>A design for testing clinical strategies: biased adaptive within-subject randomization</title><author>Lavori, P. W. ; Dawson, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5354-f5bc7d367092476e46a19bb9f24a641dceb2705fbbac950d7feb91e42e698ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive randomization</topic><topic>Algorithms</topic><topic>Applications</topic><topic>Clinical trials</topic><topic>Data imputation</topic><topic>Decision making</topic><topic>Depressive disorders</topic><topic>Design of clinical trials</topic><topic>Diseases</topic><topic>Economic sociology</topic><topic>Exact sciences and technology</topic><topic>Experiment design</topic><topic>Health outcomes</topic><topic>Inference</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Missing data</topic><topic>Monoamine oxidase inhibitors</topic><topic>Probability and statistics</topic><topic>Random allocation</topic><topic>Sciences and techniques of general use</topic><topic>Serotonin agents</topic><topic>Statistics</topic><topic>Symptoms</topic><topic>Time-varying treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavori, P. W.</creatorcontrib><creatorcontrib>Dawson, R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavori, P. W.</au><au>Dawson, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A design for testing clinical strategies: biased adaptive within-subject randomization</atitle><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle><date>2000</date><risdate>2000</risdate><volume>163</volume><issue>1</issue><spage>29</spage><epage>38</epage><pages>29-38</pages><issn>0964-1998</issn><eissn>1467-985X</eissn><abstract>We propose a method for assigning treatment in clinical trials, called the 'biased coin adaptive within-subject' (BCAWS) design: during the course of follow-up, the subject's response to a treatment is used to influence the future treatment, through a 'biased coin' algorithm. This design results in treatment patterns that are closer to actual clinical practice and may be more acceptable to patients with chronic disease than the usual fixed trial regimens, which often suffer from drop-out and non-adherence. In this work, we show how to use the BCAWS design to compare treatment strategies, and we provide a simple example to illustrate the method.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-985X.00154</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0964-1998
ispartof Journal of the Royal Statistical Society. Series A, Statistics in society, 2000, Vol.163 (1), p.29-38
issn 0964-1998
1467-985X
language eng
recordid cdi_proquest_miscellaneous_38853218
source RePEc; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Adaptive randomization
Algorithms
Applications
Clinical trials
Data imputation
Decision making
Depressive disorders
Design of clinical trials
Diseases
Economic sociology
Exact sciences and technology
Experiment design
Health outcomes
Inference
Mathematics
Medical sciences
Missing data
Monoamine oxidase inhibitors
Probability and statistics
Random allocation
Sciences and techniques of general use
Serotonin agents
Statistics
Symptoms
Time-varying treatments
title A design for testing clinical strategies: biased adaptive within-subject randomization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20design%20for%20testing%20clinical%20strategies:%20biased%20adaptive%20within-subject%20randomization&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20A,%20Statistics%20in%20society&rft.au=Lavori,%20P.%20W.&rft.date=2000&rft.volume=163&rft.issue=1&rft.spage=29&rft.epage=38&rft.pages=29-38&rft.issn=0964-1998&rft.eissn=1467-985X&rft_id=info:doi/10.1111/1467-985X.00154&rft_dat=%3Cjstor_proqu%3E2680506%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38853218&rft_id=info:pmid/&rft_jstor_id=2680506&rfr_iscdi=true