Bayesian sample size determination for estimating binomial parameters from data subject to misclassification

We investigate the sample size problem when a binomial parameter is to be estimated, but some degree of misclassification is possible. The problem is especially challenging when the degree to which misclassification occurs is not exactly known. Motivated by a Canadian survey of the prevalence of tox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied statistics 2000, Vol.49 (1), p.119-128
Hauptverfasser: Rahme, E., Joseph, L., Gyorkos, T. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 1
container_start_page 119
container_title Applied statistics
container_volume 49
creator Rahme, E.
Joseph, L.
Gyorkos, T. W.
description We investigate the sample size problem when a binomial parameter is to be estimated, but some degree of misclassification is possible. The problem is especially challenging when the degree to which misclassification occurs is not exactly known. Motivated by a Canadian survey of the prevalence of toxoplasmosis infection in pregnant women, we examine the situation where it is desired that a marginal posterior credible interval for the prevalence of width w has coverage 1-α, using a Bayesian sample size criterion. The degree to which the misclassification probabilities are known a priori can have a very large effect on sample size requirements, and in some cases achieving a coverage of 1-α is impossible, even with an infinite sample size. Therefore, investigators must carefully evaluate the degree to which misclassification can occur when estimating sample size requirements.
doi_str_mv 10.1111/1467-9876.00182
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38848699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2680864</jstor_id><sourcerecordid>2680864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5112-8adecdcbd447e75ca3fa25e6311a94ffa92a72fbf44e81c02a4cd1d23db1fb1a3</originalsourceid><addsrcrecordid>eNqFUE1v1DAQjRBILIUzFw4-IG5p_ZXEOULVD1BVpC2IozVxbPDixMGTBZZfj9NUy5GRxk_2vDd6fkXxktFTluuMybopW9XUp5QyxR8Vm-PL42JDqajKllfyafEMcUdzMSo3RXgHB4seRoIwTMES9H8s6e1s0-BHmH0ciYuJWJz9kK_jV9L5MQ4eApkgwbAwkbgUB9LDDAT33c6amcyRDB5NAETvvLnf9Lx44iCgffGAJ8Xny4tP59flzcer9-dvb0pTMcZLBb01vel6KRvbVAaEA17ZWjAGrXQOWg4Nd52T0ipmKAdpetZz0XfMdQzESfFm3Tul-GOfrevFig0BRhv3qIVSUtVtm4lnK9GkiJis01PK30wHzaheUtVLhnrJUN-nmhUfVkWykzVHehdgFxOi0T-1ANnm45Cb55gz-Nws97QgazXjSn-bh7zs9YNPQAPBJRiNx38eBG0qWmeaXGm_fLCH_1nU27u789Xqq1W2wzmmo4zXiqpa5nG5jj3O9vdxDOm7rhvRVPrL7ZW-vm3U9rLZaiX-AuVPu1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38848699</pqid></control><display><type>article</type><title>Bayesian sample size determination for estimating binomial parameters from data subject to misclassification</title><source>RePEc</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Rahme, E. ; Joseph, L. ; Gyorkos, T. W.</creator><creatorcontrib>Rahme, E. ; Joseph, L. ; Gyorkos, T. W.</creatorcontrib><description>We investigate the sample size problem when a binomial parameter is to be estimated, but some degree of misclassification is possible. The problem is especially challenging when the degree to which misclassification occurs is not exactly known. Motivated by a Canadian survey of the prevalence of toxoplasmosis infection in pregnant women, we examine the situation where it is desired that a marginal posterior credible interval for the prevalence of width w has coverage 1-α, using a Bayesian sample size criterion. The degree to which the misclassification probabilities are known a priori can have a very large effect on sample size requirements, and in some cases achieving a coverage of 1-α is impossible, even with an infinite sample size. Therefore, investigators must carefully evaluate the degree to which misclassification can occur when estimating sample size requirements.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/1467-9876.00182</identifier><identifier>CODEN: APSTAG</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>A priori knowledge ; Arithmetic mean ; Average coverage criterion ; Bayesian estimation ; Bayesian method ; Binomial distribution ; Binomials ; Classification ; Data collection ; Decision theory ; Diagnostic test ; Disease prevalence rates ; Distribution ; Error rates ; Estimate reliability ; Estimation ; Exact sciences and technology ; Interval estimators ; Mathematics ; Medical diagnostic tests ; Misclassification ; Parametric inference ; Pregnancy ; Prevalence ; Probability and statistics ; Regression analysis ; Sample size ; Samples ; Sciences and techniques of general use ; Statistics</subject><ispartof>Applied statistics, 2000, Vol.49 (1), p.119-128</ispartof><rights>Copyright 2000 The Royal Statistical Society</rights><rights>2000 Royal Statistical Society</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5112-8adecdcbd447e75ca3fa25e6311a94ffa92a72fbf44e81c02a4cd1d23db1fb1a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2680864$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2680864$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,4008,4024,27923,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1307506$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssc/v_3a49_3ay_3a2000_3ai_3a1_3ap_3a119-128.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahme, E.</creatorcontrib><creatorcontrib>Joseph, L.</creatorcontrib><creatorcontrib>Gyorkos, T. W.</creatorcontrib><title>Bayesian sample size determination for estimating binomial parameters from data subject to misclassification</title><title>Applied statistics</title><description>We investigate the sample size problem when a binomial parameter is to be estimated, but some degree of misclassification is possible. The problem is especially challenging when the degree to which misclassification occurs is not exactly known. Motivated by a Canadian survey of the prevalence of toxoplasmosis infection in pregnant women, we examine the situation where it is desired that a marginal posterior credible interval for the prevalence of width w has coverage 1-α, using a Bayesian sample size criterion. The degree to which the misclassification probabilities are known a priori can have a very large effect on sample size requirements, and in some cases achieving a coverage of 1-α is impossible, even with an infinite sample size. Therefore, investigators must carefully evaluate the degree to which misclassification can occur when estimating sample size requirements.</description><subject>A priori knowledge</subject><subject>Arithmetic mean</subject><subject>Average coverage criterion</subject><subject>Bayesian estimation</subject><subject>Bayesian method</subject><subject>Binomial distribution</subject><subject>Binomials</subject><subject>Classification</subject><subject>Data collection</subject><subject>Decision theory</subject><subject>Diagnostic test</subject><subject>Disease prevalence rates</subject><subject>Distribution</subject><subject>Error rates</subject><subject>Estimate reliability</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Interval estimators</subject><subject>Mathematics</subject><subject>Medical diagnostic tests</subject><subject>Misclassification</subject><subject>Parametric inference</subject><subject>Pregnancy</subject><subject>Prevalence</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sample size</subject><subject>Samples</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUE1v1DAQjRBILIUzFw4-IG5p_ZXEOULVD1BVpC2IozVxbPDixMGTBZZfj9NUy5GRxk_2vDd6fkXxktFTluuMybopW9XUp5QyxR8Vm-PL42JDqajKllfyafEMcUdzMSo3RXgHB4seRoIwTMES9H8s6e1s0-BHmH0ciYuJWJz9kK_jV9L5MQ4eApkgwbAwkbgUB9LDDAT33c6amcyRDB5NAETvvLnf9Lx44iCgffGAJ8Xny4tP59flzcer9-dvb0pTMcZLBb01vel6KRvbVAaEA17ZWjAGrXQOWg4Nd52T0ipmKAdpetZz0XfMdQzESfFm3Tul-GOfrevFig0BRhv3qIVSUtVtm4lnK9GkiJis01PK30wHzaheUtVLhnrJUN-nmhUfVkWykzVHehdgFxOi0T-1ANnm45Cb55gz-Nws97QgazXjSn-bh7zs9YNPQAPBJRiNx38eBG0qWmeaXGm_fLCH_1nU27u789Xqq1W2wzmmo4zXiqpa5nG5jj3O9vdxDOm7rhvRVPrL7ZW-vm3U9rLZaiX-AuVPu1c</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Rahme, E.</creator><creator>Joseph, L.</creator><creator>Gyorkos, T. W.</creator><general>Blackwell Publishers Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>2000</creationdate><title>Bayesian sample size determination for estimating binomial parameters from data subject to misclassification</title><author>Rahme, E. ; Joseph, L. ; Gyorkos, T. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5112-8adecdcbd447e75ca3fa25e6311a94ffa92a72fbf44e81c02a4cd1d23db1fb1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>A priori knowledge</topic><topic>Arithmetic mean</topic><topic>Average coverage criterion</topic><topic>Bayesian estimation</topic><topic>Bayesian method</topic><topic>Binomial distribution</topic><topic>Binomials</topic><topic>Classification</topic><topic>Data collection</topic><topic>Decision theory</topic><topic>Diagnostic test</topic><topic>Disease prevalence rates</topic><topic>Distribution</topic><topic>Error rates</topic><topic>Estimate reliability</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Interval estimators</topic><topic>Mathematics</topic><topic>Medical diagnostic tests</topic><topic>Misclassification</topic><topic>Parametric inference</topic><topic>Pregnancy</topic><topic>Prevalence</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sample size</topic><topic>Samples</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahme, E.</creatorcontrib><creatorcontrib>Joseph, L.</creatorcontrib><creatorcontrib>Gyorkos, T. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahme, E.</au><au>Joseph, L.</au><au>Gyorkos, T. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian sample size determination for estimating binomial parameters from data subject to misclassification</atitle><jtitle>Applied statistics</jtitle><date>2000</date><risdate>2000</risdate><volume>49</volume><issue>1</issue><spage>119</spage><epage>128</epage><pages>119-128</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><coden>APSTAG</coden><abstract>We investigate the sample size problem when a binomial parameter is to be estimated, but some degree of misclassification is possible. The problem is especially challenging when the degree to which misclassification occurs is not exactly known. Motivated by a Canadian survey of the prevalence of toxoplasmosis infection in pregnant women, we examine the situation where it is desired that a marginal posterior credible interval for the prevalence of width w has coverage 1-α, using a Bayesian sample size criterion. The degree to which the misclassification probabilities are known a priori can have a very large effect on sample size requirements, and in some cases achieving a coverage of 1-α is impossible, even with an infinite sample size. Therefore, investigators must carefully evaluate the degree to which misclassification can occur when estimating sample size requirements.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-9876.00182</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-9254
ispartof Applied statistics, 2000, Vol.49 (1), p.119-128
issn 0035-9254
1467-9876
language eng
recordid cdi_proquest_miscellaneous_38848699
source RePEc; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects A priori knowledge
Arithmetic mean
Average coverage criterion
Bayesian estimation
Bayesian method
Binomial distribution
Binomials
Classification
Data collection
Decision theory
Diagnostic test
Disease prevalence rates
Distribution
Error rates
Estimate reliability
Estimation
Exact sciences and technology
Interval estimators
Mathematics
Medical diagnostic tests
Misclassification
Parametric inference
Pregnancy
Prevalence
Probability and statistics
Regression analysis
Sample size
Samples
Sciences and techniques of general use
Statistics
title Bayesian sample size determination for estimating binomial parameters from data subject to misclassification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20sample%20size%20determination%20for%20estimating%20binomial%20parameters%20from%20data%20subject%20to%20misclassification&rft.jtitle=Applied%20statistics&rft.au=Rahme,%20E.&rft.date=2000&rft.volume=49&rft.issue=1&rft.spage=119&rft.epage=128&rft.pages=119-128&rft.issn=0035-9254&rft.eissn=1467-9876&rft.coden=APSTAG&rft_id=info:doi/10.1111/1467-9876.00182&rft_dat=%3Cjstor_proqu%3E2680864%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38848699&rft_id=info:pmid/&rft_jstor_id=2680864&rfr_iscdi=true