Spatial Characteristics and Comparisons of Interaction and Median Clustering Models

Cluster analysis has been pursued from a number of directions for identifying interesting relationships and patterns in spatial information. A major emphasis is currently on the development and refinement of optimization‐based clustering models for the purpose of exploring spatially referenced data....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geographical analysis 2000-01, Vol.32 (1), p.1-18
1. Verfasser: Murray, Alan T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 1
container_title Geographical analysis
container_volume 32
creator Murray, Alan T.
description Cluster analysis has been pursued from a number of directions for identifying interesting relationships and patterns in spatial information. A major emphasis is currently on the development and refinement of optimization‐based clustering models for the purpose of exploring spatially referenced data. Within this context, two basic methods exist for identifying clusters that are most similar. An interesting feature of these two approaches is that one method approximates the relationships inherent in the other method. This is significant given that the approximation approach is invariably utilized for cluster detection in spatial and aspatial analysis. A number of spatial applications are investigated which highlight the differences in clusters produced by each model. This is an important contribution because the differences are in fact quite significant, yet these contrasts are not widely known or acknowledged.
doi_str_mv 10.1111/j.1538-4632.2000.tb00412.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38834915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38834915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4292-3cd0e24dd48910db6bb72eebab57c91f1ad38fc74122907bed5f8a1c13f15d133</originalsourceid><addsrcrecordid>eNqVkEtPAyEUhYnRxFr9DxNj3M3IY55uTDOptUmri-qaMMAoDYURprH99zK26V42l3DOvYf7AXCLYILCeVgnKCNlnOYEJxhCmPQNhCnCye4MjE7SORhBiPK4IDm5BFfer4MVF4iMwGrVsV4xHdVfzDHeS6d8r7iPmBFRbTcdCw_W-Mi20dwEOXiUNX_yUgrFTFTrrR_6zGe0tEJqfw0uWqa9vDnWMfh4nr7XL_HibTavJ4uYp7jCMeECSpwKkZYVgqLJm6bAUjasyQpeoRYxQcqWF2EdXMGikSJrS4Y4Ii3KBCJkDO4Pcztnv7fS93SjPJdaMyPt1lNSliStAoUxeDwYubPeO9nSzqkNc3uKIB040jUdYNEBFh040iNHugvNd8cU5jnTrWOGK3-akGMYfjdkPB1sP0rL_T8C6Gw6eQ038gvN74hf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38834915</pqid></control><display><type>article</type><title>Spatial Characteristics and Comparisons of Interaction and Median Clustering Models</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Murray, Alan T.</creator><creatorcontrib>Murray, Alan T.</creatorcontrib><description>Cluster analysis has been pursued from a number of directions for identifying interesting relationships and patterns in spatial information. A major emphasis is currently on the development and refinement of optimization‐based clustering models for the purpose of exploring spatially referenced data. Within this context, two basic methods exist for identifying clusters that are most similar. An interesting feature of these two approaches is that one method approximates the relationships inherent in the other method. This is significant given that the approximation approach is invariably utilized for cluster detection in spatial and aspatial analysis. A number of spatial applications are investigated which highlight the differences in clusters produced by each model. This is an important contribution because the differences are in fact quite significant, yet these contrasts are not widely known or acknowledged.</description><identifier>ISSN: 0016-7363</identifier><identifier>EISSN: 1538-4632</identifier><identifier>DOI: 10.1111/j.1538-4632.2000.tb00412.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bgi / Prodig ; Cluster analysis ; General methodology ; Geography ; Mathematical economics ; Modelling ; Spatial dimension ; Statistical and stochastic methods</subject><ispartof>Geographical analysis, 2000-01, Vol.32 (1), p.1-18</ispartof><rights>2000 The Ohio State University</rights><rights>Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI), 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4292-3cd0e24dd48910db6bb72eebab57c91f1ad38fc74122907bed5f8a1c13f15d133</citedby><cites>FETCH-LOGICAL-c4292-3cd0e24dd48910db6bb72eebab57c91f1ad38fc74122907bed5f8a1c13f15d133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6202905$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Murray, Alan T.</creatorcontrib><title>Spatial Characteristics and Comparisons of Interaction and Median Clustering Models</title><title>Geographical analysis</title><description>Cluster analysis has been pursued from a number of directions for identifying interesting relationships and patterns in spatial information. A major emphasis is currently on the development and refinement of optimization‐based clustering models for the purpose of exploring spatially referenced data. Within this context, two basic methods exist for identifying clusters that are most similar. An interesting feature of these two approaches is that one method approximates the relationships inherent in the other method. This is significant given that the approximation approach is invariably utilized for cluster detection in spatial and aspatial analysis. A number of spatial applications are investigated which highlight the differences in clusters produced by each model. This is an important contribution because the differences are in fact quite significant, yet these contrasts are not widely known or acknowledged.</description><subject>Bgi / Prodig</subject><subject>Cluster analysis</subject><subject>General methodology</subject><subject>Geography</subject><subject>Mathematical economics</subject><subject>Modelling</subject><subject>Spatial dimension</subject><subject>Statistical and stochastic methods</subject><issn>0016-7363</issn><issn>1538-4632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqVkEtPAyEUhYnRxFr9DxNj3M3IY55uTDOptUmri-qaMMAoDYURprH99zK26V42l3DOvYf7AXCLYILCeVgnKCNlnOYEJxhCmPQNhCnCye4MjE7SORhBiPK4IDm5BFfer4MVF4iMwGrVsV4xHdVfzDHeS6d8r7iPmBFRbTcdCw_W-Mi20dwEOXiUNX_yUgrFTFTrrR_6zGe0tEJqfw0uWqa9vDnWMfh4nr7XL_HibTavJ4uYp7jCMeECSpwKkZYVgqLJm6bAUjasyQpeoRYxQcqWF2EdXMGikSJrS4Y4Ii3KBCJkDO4Pcztnv7fS93SjPJdaMyPt1lNSliStAoUxeDwYubPeO9nSzqkNc3uKIB040jUdYNEBFh040iNHugvNd8cU5jnTrWOGK3-akGMYfjdkPB1sP0rL_T8C6Gw6eQ038gvN74hf</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Murray, Alan T.</creator><general>Blackwell Publishing Ltd</general><general>Ohio State University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200001</creationdate><title>Spatial Characteristics and Comparisons of Interaction and Median Clustering Models</title><author>Murray, Alan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4292-3cd0e24dd48910db6bb72eebab57c91f1ad38fc74122907bed5f8a1c13f15d133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bgi / Prodig</topic><topic>Cluster analysis</topic><topic>General methodology</topic><topic>Geography</topic><topic>Mathematical economics</topic><topic>Modelling</topic><topic>Spatial dimension</topic><topic>Statistical and stochastic methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murray, Alan T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Geographical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murray, Alan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Characteristics and Comparisons of Interaction and Median Clustering Models</atitle><jtitle>Geographical analysis</jtitle><date>2000-01</date><risdate>2000</risdate><volume>32</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0016-7363</issn><eissn>1538-4632</eissn><abstract>Cluster analysis has been pursued from a number of directions for identifying interesting relationships and patterns in spatial information. A major emphasis is currently on the development and refinement of optimization‐based clustering models for the purpose of exploring spatially referenced data. Within this context, two basic methods exist for identifying clusters that are most similar. An interesting feature of these two approaches is that one method approximates the relationships inherent in the other method. This is significant given that the approximation approach is invariably utilized for cluster detection in spatial and aspatial analysis. A number of spatial applications are investigated which highlight the differences in clusters produced by each model. This is an important contribution because the differences are in fact quite significant, yet these contrasts are not widely known or acknowledged.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1538-4632.2000.tb00412.x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-7363
ispartof Geographical analysis, 2000-01, Vol.32 (1), p.1-18
issn 0016-7363
1538-4632
language eng
recordid cdi_proquest_miscellaneous_38834915
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Bgi / Prodig
Cluster analysis
General methodology
Geography
Mathematical economics
Modelling
Spatial dimension
Statistical and stochastic methods
title Spatial Characteristics and Comparisons of Interaction and Median Clustering Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Characteristics%20and%20Comparisons%20of%20Interaction%20and%20Median%20Clustering%20Models&rft.jtitle=Geographical%20analysis&rft.au=Murray,%20Alan%20T.&rft.date=2000-01&rft.volume=32&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0016-7363&rft.eissn=1538-4632&rft_id=info:doi/10.1111/j.1538-4632.2000.tb00412.x&rft_dat=%3Cproquest_cross%3E38834915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38834915&rft_id=info:pmid/&rfr_iscdi=true