Spatial Characteristics and Comparisons of Interaction and Median Clustering Models
Cluster analysis has been pursued from a number of directions for identifying interesting relationships and patterns in spatial information. A major emphasis is currently on the development and refinement of optimization‐based clustering models for the purpose of exploring spatially referenced data....
Gespeichert in:
Veröffentlicht in: | Geographical analysis 2000-01, Vol.32 (1), p.1-18 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Geographical analysis |
container_volume | 32 |
creator | Murray, Alan T. |
description | Cluster analysis has been pursued from a number of directions for identifying interesting relationships and patterns in spatial information. A major emphasis is currently on the development and refinement of optimization‐based clustering models for the purpose of exploring spatially referenced data. Within this context, two basic methods exist for identifying clusters that are most similar. An interesting feature of these two approaches is that one method approximates the relationships inherent in the other method. This is significant given that the approximation approach is invariably utilized for cluster detection in spatial and aspatial analysis. A number of spatial applications are investigated which highlight the differences in clusters produced by each model. This is an important contribution because the differences are in fact quite significant, yet these contrasts are not widely known or acknowledged. |
doi_str_mv | 10.1111/j.1538-4632.2000.tb00412.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38834915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38834915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4292-3cd0e24dd48910db6bb72eebab57c91f1ad38fc74122907bed5f8a1c13f15d133</originalsourceid><addsrcrecordid>eNqVkEtPAyEUhYnRxFr9DxNj3M3IY55uTDOptUmri-qaMMAoDYURprH99zK26V42l3DOvYf7AXCLYILCeVgnKCNlnOYEJxhCmPQNhCnCye4MjE7SORhBiPK4IDm5BFfer4MVF4iMwGrVsV4xHdVfzDHeS6d8r7iPmBFRbTcdCw_W-Mi20dwEOXiUNX_yUgrFTFTrrR_6zGe0tEJqfw0uWqa9vDnWMfh4nr7XL_HibTavJ4uYp7jCMeECSpwKkZYVgqLJm6bAUjasyQpeoRYxQcqWF2EdXMGikSJrS4Y4Ii3KBCJkDO4Pcztnv7fS93SjPJdaMyPt1lNSliStAoUxeDwYubPeO9nSzqkNc3uKIB040jUdYNEBFh040iNHugvNd8cU5jnTrWOGK3-akGMYfjdkPB1sP0rL_T8C6Gw6eQ038gvN74hf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38834915</pqid></control><display><type>article</type><title>Spatial Characteristics and Comparisons of Interaction and Median Clustering Models</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Murray, Alan T.</creator><creatorcontrib>Murray, Alan T.</creatorcontrib><description>Cluster analysis has been pursued from a number of directions for identifying interesting relationships and patterns in spatial information. A major emphasis is currently on the development and refinement of optimization‐based clustering models for the purpose of exploring spatially referenced data. Within this context, two basic methods exist for identifying clusters that are most similar. An interesting feature of these two approaches is that one method approximates the relationships inherent in the other method. This is significant given that the approximation approach is invariably utilized for cluster detection in spatial and aspatial analysis. A number of spatial applications are investigated which highlight the differences in clusters produced by each model. This is an important contribution because the differences are in fact quite significant, yet these contrasts are not widely known or acknowledged.</description><identifier>ISSN: 0016-7363</identifier><identifier>EISSN: 1538-4632</identifier><identifier>DOI: 10.1111/j.1538-4632.2000.tb00412.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bgi / Prodig ; Cluster analysis ; General methodology ; Geography ; Mathematical economics ; Modelling ; Spatial dimension ; Statistical and stochastic methods</subject><ispartof>Geographical analysis, 2000-01, Vol.32 (1), p.1-18</ispartof><rights>2000 The Ohio State University</rights><rights>Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI), 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4292-3cd0e24dd48910db6bb72eebab57c91f1ad38fc74122907bed5f8a1c13f15d133</citedby><cites>FETCH-LOGICAL-c4292-3cd0e24dd48910db6bb72eebab57c91f1ad38fc74122907bed5f8a1c13f15d133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6202905$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Murray, Alan T.</creatorcontrib><title>Spatial Characteristics and Comparisons of Interaction and Median Clustering Models</title><title>Geographical analysis</title><description>Cluster analysis has been pursued from a number of directions for identifying interesting relationships and patterns in spatial information. A major emphasis is currently on the development and refinement of optimization‐based clustering models for the purpose of exploring spatially referenced data. Within this context, two basic methods exist for identifying clusters that are most similar. An interesting feature of these two approaches is that one method approximates the relationships inherent in the other method. This is significant given that the approximation approach is invariably utilized for cluster detection in spatial and aspatial analysis. A number of spatial applications are investigated which highlight the differences in clusters produced by each model. This is an important contribution because the differences are in fact quite significant, yet these contrasts are not widely known or acknowledged.</description><subject>Bgi / Prodig</subject><subject>Cluster analysis</subject><subject>General methodology</subject><subject>Geography</subject><subject>Mathematical economics</subject><subject>Modelling</subject><subject>Spatial dimension</subject><subject>Statistical and stochastic methods</subject><issn>0016-7363</issn><issn>1538-4632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqVkEtPAyEUhYnRxFr9DxNj3M3IY55uTDOptUmri-qaMMAoDYURprH99zK26V42l3DOvYf7AXCLYILCeVgnKCNlnOYEJxhCmPQNhCnCye4MjE7SORhBiPK4IDm5BFfer4MVF4iMwGrVsV4xHdVfzDHeS6d8r7iPmBFRbTcdCw_W-Mi20dwEOXiUNX_yUgrFTFTrrR_6zGe0tEJqfw0uWqa9vDnWMfh4nr7XL_HibTavJ4uYp7jCMeECSpwKkZYVgqLJm6bAUjasyQpeoRYxQcqWF2EdXMGikSJrS4Y4Ii3KBCJkDO4Pcztnv7fS93SjPJdaMyPt1lNSliStAoUxeDwYubPeO9nSzqkNc3uKIB040jUdYNEBFh040iNHugvNd8cU5jnTrWOGK3-akGMYfjdkPB1sP0rL_T8C6Gw6eQ038gvN74hf</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Murray, Alan T.</creator><general>Blackwell Publishing Ltd</general><general>Ohio State University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200001</creationdate><title>Spatial Characteristics and Comparisons of Interaction and Median Clustering Models</title><author>Murray, Alan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4292-3cd0e24dd48910db6bb72eebab57c91f1ad38fc74122907bed5f8a1c13f15d133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bgi / Prodig</topic><topic>Cluster analysis</topic><topic>General methodology</topic><topic>Geography</topic><topic>Mathematical economics</topic><topic>Modelling</topic><topic>Spatial dimension</topic><topic>Statistical and stochastic methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murray, Alan T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Geographical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murray, Alan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Characteristics and Comparisons of Interaction and Median Clustering Models</atitle><jtitle>Geographical analysis</jtitle><date>2000-01</date><risdate>2000</risdate><volume>32</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0016-7363</issn><eissn>1538-4632</eissn><abstract>Cluster analysis has been pursued from a number of directions for identifying interesting relationships and patterns in spatial information. A major emphasis is currently on the development and refinement of optimization‐based clustering models for the purpose of exploring spatially referenced data. Within this context, two basic methods exist for identifying clusters that are most similar. An interesting feature of these two approaches is that one method approximates the relationships inherent in the other method. This is significant given that the approximation approach is invariably utilized for cluster detection in spatial and aspatial analysis. A number of spatial applications are investigated which highlight the differences in clusters produced by each model. This is an important contribution because the differences are in fact quite significant, yet these contrasts are not widely known or acknowledged.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1538-4632.2000.tb00412.x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7363 |
ispartof | Geographical analysis, 2000-01, Vol.32 (1), p.1-18 |
issn | 0016-7363 1538-4632 |
language | eng |
recordid | cdi_proquest_miscellaneous_38834915 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Bgi / Prodig Cluster analysis General methodology Geography Mathematical economics Modelling Spatial dimension Statistical and stochastic methods |
title | Spatial Characteristics and Comparisons of Interaction and Median Clustering Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Characteristics%20and%20Comparisons%20of%20Interaction%20and%20Median%20Clustering%20Models&rft.jtitle=Geographical%20analysis&rft.au=Murray,%20Alan%20T.&rft.date=2000-01&rft.volume=32&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0016-7363&rft.eissn=1538-4632&rft_id=info:doi/10.1111/j.1538-4632.2000.tb00412.x&rft_dat=%3Cproquest_cross%3E38834915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38834915&rft_id=info:pmid/&rfr_iscdi=true |