Logistic Regression Models for Binary Panel Data with Attrition
We discuss ways of analysing panel data when the response is binary and there is attrition or drop-out. In general, informative or non-ignorable drop-out models are non-identifiable and arbitrary constraints on the drop-out model must be imposed before carrying out a statistical analysis. The proble...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 1996-01, Vol.159 (2), p.249-263 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 263 |
---|---|
container_issue | 2 |
container_start_page | 249 |
container_title | Journal of the Royal Statistical Society. Series A, Statistics in society |
container_volume | 159 |
creator | Fitzmaurice, Garrett M. Heath, Anthony F. Clifford, Peter |
description | We discuss ways of analysing panel data when the response is binary and there is attrition or drop-out. In general, informative or non-ignorable drop-out models are non-identifiable and arbitrary constraints on the drop-out model must be imposed before carrying out a statistical analysis. The problem is particularly acute when predictors as well as response variables are lost by attrition. We describe a likelihood-based method for dealing with the drop-out process in this difficult case and show how the effect of non-identifiability can be reduced by importing additional data from a cross-sectional survey of the same population. The methods are primarily motivated by data from the 1987-92 British Election Panel Study and the 1992 British Election Study. |
doi_str_mv | 10.2307/2983172 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38822168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2983172</jstor_id><sourcerecordid>2983172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3827-b050ed40e89978127e82ffdae7a93ada0ba4c083457ccadafb6e8c433d875a443</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKv4F3IQPW3NJtkmOUmtn1BRWgVvS5rN1pTtRjMppf_elBY9dS7DwMMzMy9C5znpUUbENVWS5YIeoE7O-yJTsvg8RB2i-jzLlZLH6ARgTjYlRAfdjPzMQXQGj-0sWADnW_ziK9sArn3At67VYY3fdGsbfKejxisXv_AgxuBiYk_RUa0bsGe73kUfD_fvw6ds9Pr4PByMMsMkFdmUFMRWnFiplJA5FVbSuq60FVoxXWky1dwQyXghjElzPe1baThjlRSF5px10eXW-x38z9JCLBcOjG2adJhfQsmkpDTvywRebUETPECwdfkd3CL9UOak3ARU7gJK5MVOqcHopg66NQ7-cEbSqXyD9bbYyjV2vc9WjieTQYqUiX_vHKIPe9f_AvrGfRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38822168</pqid></control><display><type>article</type><title>Logistic Regression Models for Binary Panel Data with Attrition</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Fitzmaurice, Garrett M. ; Heath, Anthony F. ; Clifford, Peter</creator><creatorcontrib>Fitzmaurice, Garrett M. ; Heath, Anthony F. ; Clifford, Peter</creatorcontrib><description>We discuss ways of analysing panel data when the response is binary and there is attrition or drop-out. In general, informative or non-ignorable drop-out models are non-identifiable and arbitrary constraints on the drop-out model must be imposed before carrying out a statistical analysis. The problem is particularly acute when predictors as well as response variables are lost by attrition. We describe a likelihood-based method for dealing with the drop-out process in this difficult case and show how the effect of non-identifiability can be reduced by importing additional data from a cross-sectional survey of the same population. The methods are primarily motivated by data from the 1987-92 British Election Panel Study and the 1992 British Election Study.</description><identifier>ISSN: 0964-1998</identifier><identifier>EISSN: 1467-985X</identifier><identifier>DOI: 10.2307/2983172</identifier><language>eng</language><publisher>Oxford: Blackwell Publishers</publisher><subject>Cohort studies ; Conservatism ; Diseases ; Elections ; em algorithm ; Exact sciences and technology ; Forecasts ; Health ; Identifiability ; Linear inference, regression ; Logistic regression ; longitudinal data ; marginal models ; Mathematics ; missing data ; Modeling ; Parametric models ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Statistical analysis ; Statistics ; Unemployment ; Voting ; Voting behavior</subject><ispartof>Journal of the Royal Statistical Society. Series A, Statistics in society, 1996-01, Vol.159 (2), p.249-263</ispartof><rights>Copyright 1996 The Royal Statistical Society</rights><rights>1996 Royal Statistical Society</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3827-b050ed40e89978127e82ffdae7a93ada0ba4c083457ccadafb6e8c433d875a443</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2983172$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2983172$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3099742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fitzmaurice, Garrett M.</creatorcontrib><creatorcontrib>Heath, Anthony F.</creatorcontrib><creatorcontrib>Clifford, Peter</creatorcontrib><title>Logistic Regression Models for Binary Panel Data with Attrition</title><title>Journal of the Royal Statistical Society. Series A, Statistics in society</title><description>We discuss ways of analysing panel data when the response is binary and there is attrition or drop-out. In general, informative or non-ignorable drop-out models are non-identifiable and arbitrary constraints on the drop-out model must be imposed before carrying out a statistical analysis. The problem is particularly acute when predictors as well as response variables are lost by attrition. We describe a likelihood-based method for dealing with the drop-out process in this difficult case and show how the effect of non-identifiability can be reduced by importing additional data from a cross-sectional survey of the same population. The methods are primarily motivated by data from the 1987-92 British Election Panel Study and the 1992 British Election Study.</description><subject>Cohort studies</subject><subject>Conservatism</subject><subject>Diseases</subject><subject>Elections</subject><subject>em algorithm</subject><subject>Exact sciences and technology</subject><subject>Forecasts</subject><subject>Health</subject><subject>Identifiability</subject><subject>Linear inference, regression</subject><subject>Logistic regression</subject><subject>longitudinal data</subject><subject>marginal models</subject><subject>Mathematics</subject><subject>missing data</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Unemployment</subject><subject>Voting</subject><subject>Voting behavior</subject><issn>0964-1998</issn><issn>1467-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKv4F3IQPW3NJtkmOUmtn1BRWgVvS5rN1pTtRjMppf_elBY9dS7DwMMzMy9C5znpUUbENVWS5YIeoE7O-yJTsvg8RB2i-jzLlZLH6ARgTjYlRAfdjPzMQXQGj-0sWADnW_ziK9sArn3At67VYY3fdGsbfKejxisXv_AgxuBiYk_RUa0bsGe73kUfD_fvw6ds9Pr4PByMMsMkFdmUFMRWnFiplJA5FVbSuq60FVoxXWky1dwQyXghjElzPe1baThjlRSF5px10eXW-x38z9JCLBcOjG2adJhfQsmkpDTvywRebUETPECwdfkd3CL9UOak3ARU7gJK5MVOqcHopg66NQ7-cEbSqXyD9bbYyjV2vc9WjieTQYqUiX_vHKIPe9f_AvrGfRE</recordid><startdate>19960101</startdate><enddate>19960101</enddate><creator>Fitzmaurice, Garrett M.</creator><creator>Heath, Anthony F.</creator><creator>Clifford, Peter</creator><general>Blackwell Publishers</general><general>Blackwell</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19960101</creationdate><title>Logistic Regression Models for Binary Panel Data with Attrition</title><author>Fitzmaurice, Garrett M. ; Heath, Anthony F. ; Clifford, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3827-b050ed40e89978127e82ffdae7a93ada0ba4c083457ccadafb6e8c433d875a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Cohort studies</topic><topic>Conservatism</topic><topic>Diseases</topic><topic>Elections</topic><topic>em algorithm</topic><topic>Exact sciences and technology</topic><topic>Forecasts</topic><topic>Health</topic><topic>Identifiability</topic><topic>Linear inference, regression</topic><topic>Logistic regression</topic><topic>longitudinal data</topic><topic>marginal models</topic><topic>Mathematics</topic><topic>missing data</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Unemployment</topic><topic>Voting</topic><topic>Voting behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitzmaurice, Garrett M.</creatorcontrib><creatorcontrib>Heath, Anthony F.</creatorcontrib><creatorcontrib>Clifford, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitzmaurice, Garrett M.</au><au>Heath, Anthony F.</au><au>Clifford, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logistic Regression Models for Binary Panel Data with Attrition</atitle><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle><date>1996-01-01</date><risdate>1996</risdate><volume>159</volume><issue>2</issue><spage>249</spage><epage>263</epage><pages>249-263</pages><issn>0964-1998</issn><eissn>1467-985X</eissn><abstract>We discuss ways of analysing panel data when the response is binary and there is attrition or drop-out. In general, informative or non-ignorable drop-out models are non-identifiable and arbitrary constraints on the drop-out model must be imposed before carrying out a statistical analysis. The problem is particularly acute when predictors as well as response variables are lost by attrition. We describe a likelihood-based method for dealing with the drop-out process in this difficult case and show how the effect of non-identifiability can be reduced by importing additional data from a cross-sectional survey of the same population. The methods are primarily motivated by data from the 1987-92 British Election Panel Study and the 1992 British Election Study.</abstract><cop>Oxford</cop><pub>Blackwell Publishers</pub><doi>10.2307/2983172</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1998 |
ispartof | Journal of the Royal Statistical Society. Series A, Statistics in society, 1996-01, Vol.159 (2), p.249-263 |
issn | 0964-1998 1467-985X |
language | eng |
recordid | cdi_proquest_miscellaneous_38822168 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Cohort studies Conservatism Diseases Elections em algorithm Exact sciences and technology Forecasts Health Identifiability Linear inference, regression Logistic regression longitudinal data marginal models Mathematics missing data Modeling Parametric models Probability and statistics Regression analysis Sciences and techniques of general use Statistical analysis Statistics Unemployment Voting Voting behavior |
title | Logistic Regression Models for Binary Panel Data with Attrition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logistic%20Regression%20Models%20for%20Binary%20Panel%20Data%20with%20Attrition&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20A,%20Statistics%20in%20society&rft.au=Fitzmaurice,%20Garrett%20M.&rft.date=1996-01-01&rft.volume=159&rft.issue=2&rft.spage=249&rft.epage=263&rft.pages=249-263&rft.issn=0964-1998&rft.eissn=1467-985X&rft_id=info:doi/10.2307/2983172&rft_dat=%3Cjstor_proqu%3E2983172%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38822168&rft_id=info:pmid/&rft_jstor_id=2983172&rfr_iscdi=true |