Logistic Regression Models for Binary Panel Data with Attrition

We discuss ways of analysing panel data when the response is binary and there is attrition or drop-out. In general, informative or non-ignorable drop-out models are non-identifiable and arbitrary constraints on the drop-out model must be imposed before carrying out a statistical analysis. The proble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 1996-01, Vol.159 (2), p.249-263
Hauptverfasser: Fitzmaurice, Garrett M., Heath, Anthony F., Clifford, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 2
container_start_page 249
container_title Journal of the Royal Statistical Society. Series A, Statistics in society
container_volume 159
creator Fitzmaurice, Garrett M.
Heath, Anthony F.
Clifford, Peter
description We discuss ways of analysing panel data when the response is binary and there is attrition or drop-out. In general, informative or non-ignorable drop-out models are non-identifiable and arbitrary constraints on the drop-out model must be imposed before carrying out a statistical analysis. The problem is particularly acute when predictors as well as response variables are lost by attrition. We describe a likelihood-based method for dealing with the drop-out process in this difficult case and show how the effect of non-identifiability can be reduced by importing additional data from a cross-sectional survey of the same population. The methods are primarily motivated by data from the 1987-92 British Election Panel Study and the 1992 British Election Study.
doi_str_mv 10.2307/2983172
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38822168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2983172</jstor_id><sourcerecordid>2983172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3827-b050ed40e89978127e82ffdae7a93ada0ba4c083457ccadafb6e8c433d875a443</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKv4F3IQPW3NJtkmOUmtn1BRWgVvS5rN1pTtRjMppf_elBY9dS7DwMMzMy9C5znpUUbENVWS5YIeoE7O-yJTsvg8RB2i-jzLlZLH6ARgTjYlRAfdjPzMQXQGj-0sWADnW_ziK9sArn3At67VYY3fdGsbfKejxisXv_AgxuBiYk_RUa0bsGe73kUfD_fvw6ds9Pr4PByMMsMkFdmUFMRWnFiplJA5FVbSuq60FVoxXWky1dwQyXghjElzPe1baThjlRSF5px10eXW-x38z9JCLBcOjG2adJhfQsmkpDTvywRebUETPECwdfkd3CL9UOak3ARU7gJK5MVOqcHopg66NQ7-cEbSqXyD9bbYyjV2vc9WjieTQYqUiX_vHKIPe9f_AvrGfRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38822168</pqid></control><display><type>article</type><title>Logistic Regression Models for Binary Panel Data with Attrition</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Fitzmaurice, Garrett M. ; Heath, Anthony F. ; Clifford, Peter</creator><creatorcontrib>Fitzmaurice, Garrett M. ; Heath, Anthony F. ; Clifford, Peter</creatorcontrib><description>We discuss ways of analysing panel data when the response is binary and there is attrition or drop-out. In general, informative or non-ignorable drop-out models are non-identifiable and arbitrary constraints on the drop-out model must be imposed before carrying out a statistical analysis. The problem is particularly acute when predictors as well as response variables are lost by attrition. We describe a likelihood-based method for dealing with the drop-out process in this difficult case and show how the effect of non-identifiability can be reduced by importing additional data from a cross-sectional survey of the same population. The methods are primarily motivated by data from the 1987-92 British Election Panel Study and the 1992 British Election Study.</description><identifier>ISSN: 0964-1998</identifier><identifier>EISSN: 1467-985X</identifier><identifier>DOI: 10.2307/2983172</identifier><language>eng</language><publisher>Oxford: Blackwell Publishers</publisher><subject>Cohort studies ; Conservatism ; Diseases ; Elections ; em algorithm ; Exact sciences and technology ; Forecasts ; Health ; Identifiability ; Linear inference, regression ; Logistic regression ; longitudinal data ; marginal models ; Mathematics ; missing data ; Modeling ; Parametric models ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Statistical analysis ; Statistics ; Unemployment ; Voting ; Voting behavior</subject><ispartof>Journal of the Royal Statistical Society. Series A, Statistics in society, 1996-01, Vol.159 (2), p.249-263</ispartof><rights>Copyright 1996 The Royal Statistical Society</rights><rights>1996 Royal Statistical Society</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3827-b050ed40e89978127e82ffdae7a93ada0ba4c083457ccadafb6e8c433d875a443</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2983172$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2983172$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3099742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fitzmaurice, Garrett M.</creatorcontrib><creatorcontrib>Heath, Anthony F.</creatorcontrib><creatorcontrib>Clifford, Peter</creatorcontrib><title>Logistic Regression Models for Binary Panel Data with Attrition</title><title>Journal of the Royal Statistical Society. Series A, Statistics in society</title><description>We discuss ways of analysing panel data when the response is binary and there is attrition or drop-out. In general, informative or non-ignorable drop-out models are non-identifiable and arbitrary constraints on the drop-out model must be imposed before carrying out a statistical analysis. The problem is particularly acute when predictors as well as response variables are lost by attrition. We describe a likelihood-based method for dealing with the drop-out process in this difficult case and show how the effect of non-identifiability can be reduced by importing additional data from a cross-sectional survey of the same population. The methods are primarily motivated by data from the 1987-92 British Election Panel Study and the 1992 British Election Study.</description><subject>Cohort studies</subject><subject>Conservatism</subject><subject>Diseases</subject><subject>Elections</subject><subject>em algorithm</subject><subject>Exact sciences and technology</subject><subject>Forecasts</subject><subject>Health</subject><subject>Identifiability</subject><subject>Linear inference, regression</subject><subject>Logistic regression</subject><subject>longitudinal data</subject><subject>marginal models</subject><subject>Mathematics</subject><subject>missing data</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Unemployment</subject><subject>Voting</subject><subject>Voting behavior</subject><issn>0964-1998</issn><issn>1467-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKv4F3IQPW3NJtkmOUmtn1BRWgVvS5rN1pTtRjMppf_elBY9dS7DwMMzMy9C5znpUUbENVWS5YIeoE7O-yJTsvg8RB2i-jzLlZLH6ARgTjYlRAfdjPzMQXQGj-0sWADnW_ziK9sArn3At67VYY3fdGsbfKejxisXv_AgxuBiYk_RUa0bsGe73kUfD_fvw6ds9Pr4PByMMsMkFdmUFMRWnFiplJA5FVbSuq60FVoxXWky1dwQyXghjElzPe1baThjlRSF5px10eXW-x38z9JCLBcOjG2adJhfQsmkpDTvywRebUETPECwdfkd3CL9UOak3ARU7gJK5MVOqcHopg66NQ7-cEbSqXyD9bbYyjV2vc9WjieTQYqUiX_vHKIPe9f_AvrGfRE</recordid><startdate>19960101</startdate><enddate>19960101</enddate><creator>Fitzmaurice, Garrett M.</creator><creator>Heath, Anthony F.</creator><creator>Clifford, Peter</creator><general>Blackwell Publishers</general><general>Blackwell</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19960101</creationdate><title>Logistic Regression Models for Binary Panel Data with Attrition</title><author>Fitzmaurice, Garrett M. ; Heath, Anthony F. ; Clifford, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3827-b050ed40e89978127e82ffdae7a93ada0ba4c083457ccadafb6e8c433d875a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Cohort studies</topic><topic>Conservatism</topic><topic>Diseases</topic><topic>Elections</topic><topic>em algorithm</topic><topic>Exact sciences and technology</topic><topic>Forecasts</topic><topic>Health</topic><topic>Identifiability</topic><topic>Linear inference, regression</topic><topic>Logistic regression</topic><topic>longitudinal data</topic><topic>marginal models</topic><topic>Mathematics</topic><topic>missing data</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Unemployment</topic><topic>Voting</topic><topic>Voting behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitzmaurice, Garrett M.</creatorcontrib><creatorcontrib>Heath, Anthony F.</creatorcontrib><creatorcontrib>Clifford, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitzmaurice, Garrett M.</au><au>Heath, Anthony F.</au><au>Clifford, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logistic Regression Models for Binary Panel Data with Attrition</atitle><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle><date>1996-01-01</date><risdate>1996</risdate><volume>159</volume><issue>2</issue><spage>249</spage><epage>263</epage><pages>249-263</pages><issn>0964-1998</issn><eissn>1467-985X</eissn><abstract>We discuss ways of analysing panel data when the response is binary and there is attrition or drop-out. In general, informative or non-ignorable drop-out models are non-identifiable and arbitrary constraints on the drop-out model must be imposed before carrying out a statistical analysis. The problem is particularly acute when predictors as well as response variables are lost by attrition. We describe a likelihood-based method for dealing with the drop-out process in this difficult case and show how the effect of non-identifiability can be reduced by importing additional data from a cross-sectional survey of the same population. The methods are primarily motivated by data from the 1987-92 British Election Panel Study and the 1992 British Election Study.</abstract><cop>Oxford</cop><pub>Blackwell Publishers</pub><doi>10.2307/2983172</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0964-1998
ispartof Journal of the Royal Statistical Society. Series A, Statistics in society, 1996-01, Vol.159 (2), p.249-263
issn 0964-1998
1467-985X
language eng
recordid cdi_proquest_miscellaneous_38822168
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Cohort studies
Conservatism
Diseases
Elections
em algorithm
Exact sciences and technology
Forecasts
Health
Identifiability
Linear inference, regression
Logistic regression
longitudinal data
marginal models
Mathematics
missing data
Modeling
Parametric models
Probability and statistics
Regression analysis
Sciences and techniques of general use
Statistical analysis
Statistics
Unemployment
Voting
Voting behavior
title Logistic Regression Models for Binary Panel Data with Attrition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logistic%20Regression%20Models%20for%20Binary%20Panel%20Data%20with%20Attrition&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20A,%20Statistics%20in%20society&rft.au=Fitzmaurice,%20Garrett%20M.&rft.date=1996-01-01&rft.volume=159&rft.issue=2&rft.spage=249&rft.epage=263&rft.pages=249-263&rft.issn=0964-1998&rft.eissn=1467-985X&rft_id=info:doi/10.2307/2983172&rft_dat=%3Cjstor_proqu%3E2983172%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38822168&rft_id=info:pmid/&rft_jstor_id=2983172&rfr_iscdi=true