Time series properties of an artificial stock market
This paper presents results from an experimental computer simulated stock market. In this market artificial intelligence algorithms take on the role of traders. They make predictions about the future, and buy and sell stock as indicated by their expectations of future risk and return. Prices are set...
Gespeichert in:
Veröffentlicht in: | Journal of economic dynamics & control 1999-09, Vol.23 (9), p.1487-1516 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1516 |
---|---|
container_issue | 9 |
container_start_page | 1487 |
container_title | Journal of economic dynamics & control |
container_volume | 23 |
creator | LeBaron, Blake Arthur, W.Brian Palmer, Richard |
description | This paper presents results from an experimental computer simulated stock market. In this market artificial intelligence algorithms take on the role of traders. They make predictions about the future, and buy and sell stock as indicated by their expectations of future risk and return. Prices are set endogenously to clear the market. Time series from this market are analyzed from the standpoint of well-known empirical features in real markets. The simulated market is able to replicate several of these phenomenon, including fundamental and technical predictability, volatility persistence, and leptokurtosis. Moreover, agent behavior is shown to be consistent with these features, in that they condition on the variables that are found to be significant in the time series tests. Agents are also able to collectively learn a homogeneous rational expectations equilibrium for certain parameters giving both time series and individual forecast values consistent with the equilibrium parameter values. |
doi_str_mv | 10.1016/S0165-1889(98)00081-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38783006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165188998000815</els_id><sourcerecordid>38783006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-51be7fd805d8c49bd789c26a7673193e6dd14d4b6ff368d647f9bc1a5ce616833</originalsourceid><addsrcrecordid>eNqFUMtKAzEUDaJgrX6CMLgQXYzmNpPXSqT4goILdR3S5A6mj5kxmQr9ezNWXLhxcR8J55ycHEJOgV4BBXH9khsvQSl9odUlpVRByffICJTUJciK7ZPRL-SQHKW0yCA-4TAi1WtYY5EwBkxFF9sOYz-sbV3YprD5UAcX7KpIfeuWxdrGJfbH5KC2q4QnP3NM3u7vXqeP5ez54Wl6Oysd16ovOcxR1l5R7pWr9NxLpd1EWCkkA81QeA-Vr-airplQXlSy1nMHljsUIBRjY3K-083GPjaYerMOyeFqZRtsN8kwJRWjVGTg2R_got3EJnszoIWcSAUDiO9ALrYpRaxNF0P-0NYANUOQ5jtIM6RktDLfQRqeec87XsQO3S8JEf22cW1jPg2zE5bbNhdorfMIufQgzGw33FZKGuD5jfd-nRVvdoqYw_sMGE1yARuHPkR0vfFt-MfTF1Utk6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196727816</pqid></control><display><type>article</type><title>Time series properties of an artificial stock market</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>LeBaron, Blake ; Arthur, W.Brian ; Palmer, Richard</creator><creatorcontrib>LeBaron, Blake ; Arthur, W.Brian ; Palmer, Richard</creatorcontrib><description>This paper presents results from an experimental computer simulated stock market. In this market artificial intelligence algorithms take on the role of traders. They make predictions about the future, and buy and sell stock as indicated by their expectations of future risk and return. Prices are set endogenously to clear the market. Time series from this market are analyzed from the standpoint of well-known empirical features in real markets. The simulated market is able to replicate several of these phenomenon, including fundamental and technical predictability, volatility persistence, and leptokurtosis. Moreover, agent behavior is shown to be consistent with these features, in that they condition on the variables that are found to be significant in the time series tests. Agents are also able to collectively learn a homogeneous rational expectations equilibrium for certain parameters giving both time series and individual forecast values consistent with the equilibrium parameter values.</description><identifier>ISSN: 0165-1889</identifier><identifier>EISSN: 1879-1743</identifier><identifier>DOI: 10.1016/S0165-1889(98)00081-5</identifier><identifier>CODEN: JEDCDH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial intelligence ; Asset pricing ; Asset valuation ; Capital market ; Computerization ; Economic models ; Evolution ; Financial time series ; Forecasts ; Learning ; Rational expectations ; Regression analysis ; Securities markets ; Simulation ; Stock exchange ; Studies ; Time series</subject><ispartof>Journal of economic dynamics & control, 1999-09, Vol.23 (9), p.1487-1516</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-51be7fd805d8c49bd789c26a7673193e6dd14d4b6ff368d647f9bc1a5ce616833</citedby><cites>FETCH-LOGICAL-c598t-51be7fd805d8c49bd789c26a7673193e6dd14d4b6ff368d647f9bc1a5ce616833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0165-1889(98)00081-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,4009,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeedyncon/v_3a23_3ay_3a1999_3ai_3a9-10_3ap_3a1487-1516.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>LeBaron, Blake</creatorcontrib><creatorcontrib>Arthur, W.Brian</creatorcontrib><creatorcontrib>Palmer, Richard</creatorcontrib><title>Time series properties of an artificial stock market</title><title>Journal of economic dynamics & control</title><description>This paper presents results from an experimental computer simulated stock market. In this market artificial intelligence algorithms take on the role of traders. They make predictions about the future, and buy and sell stock as indicated by their expectations of future risk and return. Prices are set endogenously to clear the market. Time series from this market are analyzed from the standpoint of well-known empirical features in real markets. The simulated market is able to replicate several of these phenomenon, including fundamental and technical predictability, volatility persistence, and leptokurtosis. Moreover, agent behavior is shown to be consistent with these features, in that they condition on the variables that are found to be significant in the time series tests. Agents are also able to collectively learn a homogeneous rational expectations equilibrium for certain parameters giving both time series and individual forecast values consistent with the equilibrium parameter values.</description><subject>Artificial intelligence</subject><subject>Asset pricing</subject><subject>Asset valuation</subject><subject>Capital market</subject><subject>Computerization</subject><subject>Economic models</subject><subject>Evolution</subject><subject>Financial time series</subject><subject>Forecasts</subject><subject>Learning</subject><subject>Rational expectations</subject><subject>Regression analysis</subject><subject>Securities markets</subject><subject>Simulation</subject><subject>Stock exchange</subject><subject>Studies</subject><subject>Time series</subject><issn>0165-1889</issn><issn>1879-1743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUMtKAzEUDaJgrX6CMLgQXYzmNpPXSqT4goILdR3S5A6mj5kxmQr9ezNWXLhxcR8J55ycHEJOgV4BBXH9khsvQSl9odUlpVRByffICJTUJciK7ZPRL-SQHKW0yCA-4TAi1WtYY5EwBkxFF9sOYz-sbV3YprD5UAcX7KpIfeuWxdrGJfbH5KC2q4QnP3NM3u7vXqeP5ez54Wl6Oysd16ovOcxR1l5R7pWr9NxLpd1EWCkkA81QeA-Vr-airplQXlSy1nMHljsUIBRjY3K-083GPjaYerMOyeFqZRtsN8kwJRWjVGTg2R_got3EJnszoIWcSAUDiO9ALrYpRaxNF0P-0NYANUOQ5jtIM6RktDLfQRqeec87XsQO3S8JEf22cW1jPg2zE5bbNhdorfMIufQgzGw33FZKGuD5jfd-nRVvdoqYw_sMGE1yARuHPkR0vfFt-MfTF1Utk6w</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>LeBaron, Blake</creator><creator>Arthur, W.Brian</creator><creator>Palmer, Richard</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19990901</creationdate><title>Time series properties of an artificial stock market</title><author>LeBaron, Blake ; Arthur, W.Brian ; Palmer, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-51be7fd805d8c49bd789c26a7673193e6dd14d4b6ff368d647f9bc1a5ce616833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Artificial intelligence</topic><topic>Asset pricing</topic><topic>Asset valuation</topic><topic>Capital market</topic><topic>Computerization</topic><topic>Economic models</topic><topic>Evolution</topic><topic>Financial time series</topic><topic>Forecasts</topic><topic>Learning</topic><topic>Rational expectations</topic><topic>Regression analysis</topic><topic>Securities markets</topic><topic>Simulation</topic><topic>Stock exchange</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LeBaron, Blake</creatorcontrib><creatorcontrib>Arthur, W.Brian</creatorcontrib><creatorcontrib>Palmer, Richard</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of economic dynamics & control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LeBaron, Blake</au><au>Arthur, W.Brian</au><au>Palmer, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time series properties of an artificial stock market</atitle><jtitle>Journal of economic dynamics & control</jtitle><date>1999-09-01</date><risdate>1999</risdate><volume>23</volume><issue>9</issue><spage>1487</spage><epage>1516</epage><pages>1487-1516</pages><issn>0165-1889</issn><eissn>1879-1743</eissn><coden>JEDCDH</coden><abstract>This paper presents results from an experimental computer simulated stock market. In this market artificial intelligence algorithms take on the role of traders. They make predictions about the future, and buy and sell stock as indicated by their expectations of future risk and return. Prices are set endogenously to clear the market. Time series from this market are analyzed from the standpoint of well-known empirical features in real markets. The simulated market is able to replicate several of these phenomenon, including fundamental and technical predictability, volatility persistence, and leptokurtosis. Moreover, agent behavior is shown to be consistent with these features, in that they condition on the variables that are found to be significant in the time series tests. Agents are also able to collectively learn a homogeneous rational expectations equilibrium for certain parameters giving both time series and individual forecast values consistent with the equilibrium parameter values.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0165-1889(98)00081-5</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1889 |
ispartof | Journal of economic dynamics & control, 1999-09, Vol.23 (9), p.1487-1516 |
issn | 0165-1889 1879-1743 |
language | eng |
recordid | cdi_proquest_miscellaneous_38783006 |
source | RePEc; Access via ScienceDirect (Elsevier) |
subjects | Artificial intelligence Asset pricing Asset valuation Capital market Computerization Economic models Evolution Financial time series Forecasts Learning Rational expectations Regression analysis Securities markets Simulation Stock exchange Studies Time series |
title | Time series properties of an artificial stock market |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20series%20properties%20of%20an%20artificial%20stock%20market&rft.jtitle=Journal%20of%20economic%20dynamics%20&%20control&rft.au=LeBaron,%20Blake&rft.date=1999-09-01&rft.volume=23&rft.issue=9&rft.spage=1487&rft.epage=1516&rft.pages=1487-1516&rft.issn=0165-1889&rft.eissn=1879-1743&rft.coden=JEDCDH&rft_id=info:doi/10.1016/S0165-1889(98)00081-5&rft_dat=%3Cproquest_cross%3E38783006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196727816&rft_id=info:pmid/&rft_els_id=S0165188998000815&rfr_iscdi=true |