Time series properties of an artificial stock market

This paper presents results from an experimental computer simulated stock market. In this market artificial intelligence algorithms take on the role of traders. They make predictions about the future, and buy and sell stock as indicated by their expectations of future risk and return. Prices are set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of economic dynamics & control 1999-09, Vol.23 (9), p.1487-1516
Hauptverfasser: LeBaron, Blake, Arthur, W.Brian, Palmer, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1516
container_issue 9
container_start_page 1487
container_title Journal of economic dynamics & control
container_volume 23
creator LeBaron, Blake
Arthur, W.Brian
Palmer, Richard
description This paper presents results from an experimental computer simulated stock market. In this market artificial intelligence algorithms take on the role of traders. They make predictions about the future, and buy and sell stock as indicated by their expectations of future risk and return. Prices are set endogenously to clear the market. Time series from this market are analyzed from the standpoint of well-known empirical features in real markets. The simulated market is able to replicate several of these phenomenon, including fundamental and technical predictability, volatility persistence, and leptokurtosis. Moreover, agent behavior is shown to be consistent with these features, in that they condition on the variables that are found to be significant in the time series tests. Agents are also able to collectively learn a homogeneous rational expectations equilibrium for certain parameters giving both time series and individual forecast values consistent with the equilibrium parameter values.
doi_str_mv 10.1016/S0165-1889(98)00081-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38783006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165188998000815</els_id><sourcerecordid>38783006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-51be7fd805d8c49bd789c26a7673193e6dd14d4b6ff368d647f9bc1a5ce616833</originalsourceid><addsrcrecordid>eNqFUMtKAzEUDaJgrX6CMLgQXYzmNpPXSqT4goILdR3S5A6mj5kxmQr9ezNWXLhxcR8J55ycHEJOgV4BBXH9khsvQSl9odUlpVRByffICJTUJciK7ZPRL-SQHKW0yCA-4TAi1WtYY5EwBkxFF9sOYz-sbV3YprD5UAcX7KpIfeuWxdrGJfbH5KC2q4QnP3NM3u7vXqeP5ez54Wl6Oysd16ovOcxR1l5R7pWr9NxLpd1EWCkkA81QeA-Vr-airplQXlSy1nMHljsUIBRjY3K-083GPjaYerMOyeFqZRtsN8kwJRWjVGTg2R_got3EJnszoIWcSAUDiO9ALrYpRaxNF0P-0NYANUOQ5jtIM6RktDLfQRqeec87XsQO3S8JEf22cW1jPg2zE5bbNhdorfMIufQgzGw33FZKGuD5jfd-nRVvdoqYw_sMGE1yARuHPkR0vfFt-MfTF1Utk6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196727816</pqid></control><display><type>article</type><title>Time series properties of an artificial stock market</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>LeBaron, Blake ; Arthur, W.Brian ; Palmer, Richard</creator><creatorcontrib>LeBaron, Blake ; Arthur, W.Brian ; Palmer, Richard</creatorcontrib><description>This paper presents results from an experimental computer simulated stock market. In this market artificial intelligence algorithms take on the role of traders. They make predictions about the future, and buy and sell stock as indicated by their expectations of future risk and return. Prices are set endogenously to clear the market. Time series from this market are analyzed from the standpoint of well-known empirical features in real markets. The simulated market is able to replicate several of these phenomenon, including fundamental and technical predictability, volatility persistence, and leptokurtosis. Moreover, agent behavior is shown to be consistent with these features, in that they condition on the variables that are found to be significant in the time series tests. Agents are also able to collectively learn a homogeneous rational expectations equilibrium for certain parameters giving both time series and individual forecast values consistent with the equilibrium parameter values.</description><identifier>ISSN: 0165-1889</identifier><identifier>EISSN: 1879-1743</identifier><identifier>DOI: 10.1016/S0165-1889(98)00081-5</identifier><identifier>CODEN: JEDCDH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial intelligence ; Asset pricing ; Asset valuation ; Capital market ; Computerization ; Economic models ; Evolution ; Financial time series ; Forecasts ; Learning ; Rational expectations ; Regression analysis ; Securities markets ; Simulation ; Stock exchange ; Studies ; Time series</subject><ispartof>Journal of economic dynamics &amp; control, 1999-09, Vol.23 (9), p.1487-1516</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-51be7fd805d8c49bd789c26a7673193e6dd14d4b6ff368d647f9bc1a5ce616833</citedby><cites>FETCH-LOGICAL-c598t-51be7fd805d8c49bd789c26a7673193e6dd14d4b6ff368d647f9bc1a5ce616833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0165-1889(98)00081-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,4009,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeedyncon/v_3a23_3ay_3a1999_3ai_3a9-10_3ap_3a1487-1516.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>LeBaron, Blake</creatorcontrib><creatorcontrib>Arthur, W.Brian</creatorcontrib><creatorcontrib>Palmer, Richard</creatorcontrib><title>Time series properties of an artificial stock market</title><title>Journal of economic dynamics &amp; control</title><description>This paper presents results from an experimental computer simulated stock market. In this market artificial intelligence algorithms take on the role of traders. They make predictions about the future, and buy and sell stock as indicated by their expectations of future risk and return. Prices are set endogenously to clear the market. Time series from this market are analyzed from the standpoint of well-known empirical features in real markets. The simulated market is able to replicate several of these phenomenon, including fundamental and technical predictability, volatility persistence, and leptokurtosis. Moreover, agent behavior is shown to be consistent with these features, in that they condition on the variables that are found to be significant in the time series tests. Agents are also able to collectively learn a homogeneous rational expectations equilibrium for certain parameters giving both time series and individual forecast values consistent with the equilibrium parameter values.</description><subject>Artificial intelligence</subject><subject>Asset pricing</subject><subject>Asset valuation</subject><subject>Capital market</subject><subject>Computerization</subject><subject>Economic models</subject><subject>Evolution</subject><subject>Financial time series</subject><subject>Forecasts</subject><subject>Learning</subject><subject>Rational expectations</subject><subject>Regression analysis</subject><subject>Securities markets</subject><subject>Simulation</subject><subject>Stock exchange</subject><subject>Studies</subject><subject>Time series</subject><issn>0165-1889</issn><issn>1879-1743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUMtKAzEUDaJgrX6CMLgQXYzmNpPXSqT4goILdR3S5A6mj5kxmQr9ezNWXLhxcR8J55ycHEJOgV4BBXH9khsvQSl9odUlpVRByffICJTUJciK7ZPRL-SQHKW0yCA-4TAi1WtYY5EwBkxFF9sOYz-sbV3YprD5UAcX7KpIfeuWxdrGJfbH5KC2q4QnP3NM3u7vXqeP5ez54Wl6Oysd16ovOcxR1l5R7pWr9NxLpd1EWCkkA81QeA-Vr-airplQXlSy1nMHljsUIBRjY3K-083GPjaYerMOyeFqZRtsN8kwJRWjVGTg2R_got3EJnszoIWcSAUDiO9ALrYpRaxNF0P-0NYANUOQ5jtIM6RktDLfQRqeec87XsQO3S8JEf22cW1jPg2zE5bbNhdorfMIufQgzGw33FZKGuD5jfd-nRVvdoqYw_sMGE1yARuHPkR0vfFt-MfTF1Utk6w</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>LeBaron, Blake</creator><creator>Arthur, W.Brian</creator><creator>Palmer, Richard</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19990901</creationdate><title>Time series properties of an artificial stock market</title><author>LeBaron, Blake ; Arthur, W.Brian ; Palmer, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-51be7fd805d8c49bd789c26a7673193e6dd14d4b6ff368d647f9bc1a5ce616833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Artificial intelligence</topic><topic>Asset pricing</topic><topic>Asset valuation</topic><topic>Capital market</topic><topic>Computerization</topic><topic>Economic models</topic><topic>Evolution</topic><topic>Financial time series</topic><topic>Forecasts</topic><topic>Learning</topic><topic>Rational expectations</topic><topic>Regression analysis</topic><topic>Securities markets</topic><topic>Simulation</topic><topic>Stock exchange</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LeBaron, Blake</creatorcontrib><creatorcontrib>Arthur, W.Brian</creatorcontrib><creatorcontrib>Palmer, Richard</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of economic dynamics &amp; control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LeBaron, Blake</au><au>Arthur, W.Brian</au><au>Palmer, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time series properties of an artificial stock market</atitle><jtitle>Journal of economic dynamics &amp; control</jtitle><date>1999-09-01</date><risdate>1999</risdate><volume>23</volume><issue>9</issue><spage>1487</spage><epage>1516</epage><pages>1487-1516</pages><issn>0165-1889</issn><eissn>1879-1743</eissn><coden>JEDCDH</coden><abstract>This paper presents results from an experimental computer simulated stock market. In this market artificial intelligence algorithms take on the role of traders. They make predictions about the future, and buy and sell stock as indicated by their expectations of future risk and return. Prices are set endogenously to clear the market. Time series from this market are analyzed from the standpoint of well-known empirical features in real markets. The simulated market is able to replicate several of these phenomenon, including fundamental and technical predictability, volatility persistence, and leptokurtosis. Moreover, agent behavior is shown to be consistent with these features, in that they condition on the variables that are found to be significant in the time series tests. Agents are also able to collectively learn a homogeneous rational expectations equilibrium for certain parameters giving both time series and individual forecast values consistent with the equilibrium parameter values.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0165-1889(98)00081-5</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-1889
ispartof Journal of economic dynamics & control, 1999-09, Vol.23 (9), p.1487-1516
issn 0165-1889
1879-1743
language eng
recordid cdi_proquest_miscellaneous_38783006
source RePEc; Access via ScienceDirect (Elsevier)
subjects Artificial intelligence
Asset pricing
Asset valuation
Capital market
Computerization
Economic models
Evolution
Financial time series
Forecasts
Learning
Rational expectations
Regression analysis
Securities markets
Simulation
Stock exchange
Studies
Time series
title Time series properties of an artificial stock market
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20series%20properties%20of%20an%20artificial%20stock%20market&rft.jtitle=Journal%20of%20economic%20dynamics%20&%20control&rft.au=LeBaron,%20Blake&rft.date=1999-09-01&rft.volume=23&rft.issue=9&rft.spage=1487&rft.epage=1516&rft.pages=1487-1516&rft.issn=0165-1889&rft.eissn=1879-1743&rft.coden=JEDCDH&rft_id=info:doi/10.1016/S0165-1889(98)00081-5&rft_dat=%3Cproquest_cross%3E38783006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196727816&rft_id=info:pmid/&rft_els_id=S0165188998000815&rfr_iscdi=true