ASYMPTOTIC INFERENCE FOR NEARLY UNSTABLE AR(p) PROCESSES

In this paper nearly unstable AR(p) processes (in other words, models with characteristic roots near the unit circle) are studied. Our main aim is to describe the asymptotic behavior of the least-squares estimators of the coefficients. A convergence result is presented for the general complex-valued...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 1999-04, Vol.15 (2), p.184-217
Hauptverfasser: van der Meer, Tjacco, Pap, Gyula, van Zuijlen, Martien C.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 2
container_start_page 184
container_title Econometric theory
container_volume 15
creator van der Meer, Tjacco
Pap, Gyula
van Zuijlen, Martien C.A.
description In this paper nearly unstable AR(p) processes (in other words, models with characteristic roots near the unit circle) are studied. Our main aim is to describe the asymptotic behavior of the least-squares estimators of the coefficients. A convergence result is presented for the general complex-valued case. The limit distribution is given by the help of some continuous time AR processes. We apply the results for real-valued nearly unstable AR(p) models. In this case the limit distribution can be identified with the maximum likelihood estimator of the coefficients of the corresponding continuous time AR processes.
doi_str_mv 10.1017/S0266466699152034
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38739292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466699152034</cupid><jstor_id>3533039</jstor_id><sourcerecordid>3533039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-496fe3ae4bfd157e2f2cb3986658294d8385a96266658f412776381ccba795003</originalsourceid><addsrcrecordid>eNp1kF1LAkEUhocoyKwfEHSxEERdbM33x-W6rSaY2u4aeDWs62xo6trMCvXvW1Ekiq4OnOd9Dw8HgEsE7xFE4iGBmHPKOVcKMQwJPQINRLnyKeHwGDS22N_yU3Dm3BxChJUgDSCDZPw8TAdpN_S6_XYUR_0w8tqD2OtHQdwbe6N-kgatXuQF8e36zhvGgzBKkig5BydFtnDmYj-bYNSO0vDJ7w063TDo-TlDsPKp4oUhmaGTYoqYMLjA-YQoyTmTWNGpJJJlitd29aKgCAvBiUR5PsmEYhCSJrjZ3V3b8mNjXKWXM5ebxSJbmXLjNJGCKKxwHbz-FZyXG7uq3TRijEIhmKB1Cu1SuS2ds6bQaztbZvZLI6i3n9R_Pll3rnaduatKeygQRggkqsb-Ds9cZT4POLPvmgsimOadFz1syddHSVO9zZO9Qrac2Nn0zfww_VfiG2aFhWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554077574</pqid></control><display><type>article</type><title>ASYMPTOTIC INFERENCE FOR NEARLY UNSTABLE AR(p) PROCESSES</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>Cambridge University Press Journals Complete</source><creator>van der Meer, Tjacco ; Pap, Gyula ; van Zuijlen, Martien C.A.</creator><creatorcontrib>van der Meer, Tjacco ; Pap, Gyula ; van Zuijlen, Martien C.A.</creatorcontrib><description>In this paper nearly unstable AR(p) processes (in other words, models with characteristic roots near the unit circle) are studied. Our main aim is to describe the asymptotic behavior of the least-squares estimators of the coefficients. A convergence result is presented for the general complex-valued case. The limit distribution is given by the help of some continuous time AR processes. We apply the results for real-valued nearly unstable AR(p) models. In this case the limit distribution can be identified with the maximum likelihood estimator of the coefficients of the corresponding continuous time AR processes.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466699152034</identifier><language>eng</language><publisher>New York: Cambridge University Press</publisher><subject>Coefficients ; Complex numbers ; Econometrics ; Economic models ; Estimators ; Inference ; Mathematical analysis ; Monte Carlo simulation ; Parametric models ; Perceptron convergence procedure ; Polynomials ; Random variables ; Samples ; Simulation ; Step functions ; Time series</subject><ispartof>Econometric theory, 1999-04, Vol.15 (2), p.184-217</ispartof><rights>1999 Cambridge University Press</rights><rights>Copyright 1999 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-496fe3ae4bfd157e2f2cb3986658294d8385a96266658f412776381ccba795003</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3533039$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466699152034/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,799,27848,27903,27904,55606,57995,58228</link.rule.ids></links><search><creatorcontrib>van der Meer, Tjacco</creatorcontrib><creatorcontrib>Pap, Gyula</creatorcontrib><creatorcontrib>van Zuijlen, Martien C.A.</creatorcontrib><title>ASYMPTOTIC INFERENCE FOR NEARLY UNSTABLE AR(p) PROCESSES</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>In this paper nearly unstable AR(p) processes (in other words, models with characteristic roots near the unit circle) are studied. Our main aim is to describe the asymptotic behavior of the least-squares estimators of the coefficients. A convergence result is presented for the general complex-valued case. The limit distribution is given by the help of some continuous time AR processes. We apply the results for real-valued nearly unstable AR(p) models. In this case the limit distribution can be identified with the maximum likelihood estimator of the coefficients of the corresponding continuous time AR processes.</description><subject>Coefficients</subject><subject>Complex numbers</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Estimators</subject><subject>Inference</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Parametric models</subject><subject>Perceptron convergence procedure</subject><subject>Polynomials</subject><subject>Random variables</subject><subject>Samples</subject><subject>Simulation</subject><subject>Step functions</subject><subject>Time series</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kF1LAkEUhocoyKwfEHSxEERdbM33x-W6rSaY2u4aeDWs62xo6trMCvXvW1Ekiq4OnOd9Dw8HgEsE7xFE4iGBmHPKOVcKMQwJPQINRLnyKeHwGDS22N_yU3Dm3BxChJUgDSCDZPw8TAdpN_S6_XYUR_0w8tqD2OtHQdwbe6N-kgatXuQF8e36zhvGgzBKkig5BydFtnDmYj-bYNSO0vDJ7w063TDo-TlDsPKp4oUhmaGTYoqYMLjA-YQoyTmTWNGpJJJlitd29aKgCAvBiUR5PsmEYhCSJrjZ3V3b8mNjXKWXM5ebxSJbmXLjNJGCKKxwHbz-FZyXG7uq3TRijEIhmKB1Cu1SuS2ds6bQaztbZvZLI6i3n9R_Pll3rnaduatKeygQRggkqsb-Ds9cZT4POLPvmgsimOadFz1syddHSVO9zZO9Qrac2Nn0zfww_VfiG2aFhWI</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>van der Meer, Tjacco</creator><creator>Pap, Gyula</creator><creator>van Zuijlen, Martien C.A.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HAGHG</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19990401</creationdate><title>ASYMPTOTIC INFERENCE FOR NEARLY UNSTABLE AR(p) PROCESSES</title><author>van der Meer, Tjacco ; Pap, Gyula ; van Zuijlen, Martien C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-496fe3ae4bfd157e2f2cb3986658294d8385a96266658f412776381ccba795003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Coefficients</topic><topic>Complex numbers</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Estimators</topic><topic>Inference</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Parametric models</topic><topic>Perceptron convergence procedure</topic><topic>Polynomials</topic><topic>Random variables</topic><topic>Samples</topic><topic>Simulation</topic><topic>Step functions</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Meer, Tjacco</creatorcontrib><creatorcontrib>Pap, Gyula</creatorcontrib><creatorcontrib>van Zuijlen, Martien C.A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 12</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Meer, Tjacco</au><au>Pap, Gyula</au><au>van Zuijlen, Martien C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASYMPTOTIC INFERENCE FOR NEARLY UNSTABLE AR(p) PROCESSES</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>1999-04-01</date><risdate>1999</risdate><volume>15</volume><issue>2</issue><spage>184</spage><epage>217</epage><pages>184-217</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>In this paper nearly unstable AR(p) processes (in other words, models with characteristic roots near the unit circle) are studied. Our main aim is to describe the asymptotic behavior of the least-squares estimators of the coefficients. A convergence result is presented for the general complex-valued case. The limit distribution is given by the help of some continuous time AR processes. We apply the results for real-valued nearly unstable AR(p) models. In this case the limit distribution can be identified with the maximum likelihood estimator of the coefficients of the corresponding continuous time AR processes.</abstract><cop>New York</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466699152034</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-4666
ispartof Econometric theory, 1999-04, Vol.15 (2), p.184-217
issn 0266-4666
1469-4360
language eng
recordid cdi_proquest_miscellaneous_38739292
source Jstor Complete Legacy; Periodicals Index Online; Cambridge University Press Journals Complete
subjects Coefficients
Complex numbers
Econometrics
Economic models
Estimators
Inference
Mathematical analysis
Monte Carlo simulation
Parametric models
Perceptron convergence procedure
Polynomials
Random variables
Samples
Simulation
Step functions
Time series
title ASYMPTOTIC INFERENCE FOR NEARLY UNSTABLE AR(p) PROCESSES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASYMPTOTIC%20INFERENCE%20FOR%20NEARLY%20UNSTABLE%20AR(p)%20PROCESSES&rft.jtitle=Econometric%20theory&rft.au=van%20der%20Meer,%20Tjacco&rft.date=1999-04-01&rft.volume=15&rft.issue=2&rft.spage=184&rft.epage=217&rft.pages=184-217&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466699152034&rft_dat=%3Cjstor_proqu%3E3533039%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554077574&rft_id=info:pmid/&rft_cupid=10_1017_S0266466699152034&rft_jstor_id=3533039&rfr_iscdi=true