Semiparametric methods for response-selective and missing data problems in regression
Suppose that data are generated according to the model f(y∣ x; θ) g(x), where y is a response and x are covariates. We derive and compare semiparametric likelihood and pseudo-likelihood methods for estimating θ for situations in which units generated are not fully observed and in which it is impossi...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 1999-01, Vol.61 (2), p.413-438 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 438 |
---|---|
container_issue | 2 |
container_start_page | 413 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 61 |
creator | Lawless, J. F. Kalbfleisch, J. D. Wild, C. J. |
description | Suppose that data are generated according to the model f(y∣ x; θ) g(x), where y is a response and x are covariates. We derive and compare semiparametric likelihood and pseudo-likelihood methods for estimating θ for situations in which units generated are not fully observed and in which it is impossible or undesirable to model the covariate distribution. The probability that a unit is fully observed may depend on y, and there may be a subset of covariates which is observed only for a subsample of individuals. Our key assumptions are that the probability that a unit has missing data depends only on which of a finite number of strata that (y, x) belongs to and that the stratum membership is observed for every unit. Applications include case-control studies in epidemiology, field reliability studies and broad classes of missing data and measurement error problems. Our results make fully efficient estimation of θ feasible, and they generalize and provide insight into a variety of methods that have been proposed for specific problems. |
doi_str_mv | 10.1111/1467-9868.00185 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38680166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2680650</jstor_id><sourcerecordid>2680650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5485-846b814fb9be9d953578698bb8406cfe4e6ecc9115d3698bd9e0355abda9eacc3</originalsourceid><addsrcrecordid>eNqFUU1vFDEMHSGQKIUzFw5z4jZtsvmY5AhLKaAWRLcVEpcoyXjaLPNFPC3sv8fLoL1iyXFkv-fYL0XxkrMTTnbKpa4ra7Q5YYwb9ag4OmQe011oW9WSr54WzxC3jEzX4qi42UCfJp99D3NOsaRwNzZYtmMuM-A0DggVQgdxTg9Q-qEp-4SYhtuy8bMvpzyGDnos00D4W6JgGofnxZPWdwgv_sXj4ub92fX6Q3Xx5fzj-s1FFZU0qjJSB8NlG2wA21glVG20NSEYyXRsQYKGGC3nqhH7fGOBCaV8aLwFH6M4Ll4vfWmMn_eAs6PhInSdH2C8Rydoeca1JuDpAox5RMzQuimn3ued48zt5XN7sdxeLPdXPmJ8WhgZJogHeOj8dsyIwT044TWnY0fOrbUUEvmKfCKXXDgpjLube2oml2a_Uge7_73trjabt8sMrxbaFucxH2grWkorRuVqKSec4feh7PMPR39bK_ft87m7Xn-9-r65fOcuxR9KOqWh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38680166</pqid></control><display><type>article</type><title>Semiparametric methods for response-selective and missing data problems in regression</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Lawless, J. F. ; Kalbfleisch, J. D. ; Wild, C. J.</creator><creatorcontrib>Lawless, J. F. ; Kalbfleisch, J. D. ; Wild, C. J.</creatorcontrib><description>Suppose that data are generated according to the model f(y∣ x; θ) g(x), where y is a response and x are covariates. We derive and compare semiparametric likelihood and pseudo-likelihood methods for estimating θ for situations in which units generated are not fully observed and in which it is impossible or undesirable to model the covariate distribution. The probability that a unit is fully observed may depend on y, and there may be a subset of covariates which is observed only for a subsample of individuals. Our key assumptions are that the probability that a unit has missing data depends only on which of a finite number of strata that (y, x) belongs to and that the stratum membership is observed for every unit. Applications include case-control studies in epidemiology, field reliability studies and broad classes of missing data and measurement error problems. Our results make fully efficient estimation of θ feasible, and they generalize and provide insight into a variety of methods that have been proposed for specific problems.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/1467-9868.00185</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>Biased sampling ; Case control studies ; Epidemiology ; Estimated likelihood ; Estimation ; Estimation methods ; Incomplete data ; Linear regression ; Logistics ; Maximum likelihood estimation ; Maximum likelihood estimators ; Missing data ; Pseudolikelihood ; Regression analysis ; Sampling ; Sampling rates ; Statistical analysis ; Statistical methods ; Statistical variance ; Statistics</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 1999-01, Vol.61 (2), p.413-438</ispartof><rights>Copyright 1999 The Royal Statistical Society</rights><rights>1999 Royal Statistical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5485-846b814fb9be9d953578698bb8406cfe4e6ecc9115d3698bd9e0355abda9eacc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2680650$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2680650$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,1412,3994,27905,27906,45555,45556,57998,58002,58231,58235</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a61_3ay_3a1999_3ai_3a2_3ap_3a413-438.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawless, J. F.</creatorcontrib><creatorcontrib>Kalbfleisch, J. D.</creatorcontrib><creatorcontrib>Wild, C. J.</creatorcontrib><title>Semiparametric methods for response-selective and missing data problems in regression</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>Suppose that data are generated according to the model f(y∣ x; θ) g(x), where y is a response and x are covariates. We derive and compare semiparametric likelihood and pseudo-likelihood methods for estimating θ for situations in which units generated are not fully observed and in which it is impossible or undesirable to model the covariate distribution. The probability that a unit is fully observed may depend on y, and there may be a subset of covariates which is observed only for a subsample of individuals. Our key assumptions are that the probability that a unit has missing data depends only on which of a finite number of strata that (y, x) belongs to and that the stratum membership is observed for every unit. Applications include case-control studies in epidemiology, field reliability studies and broad classes of missing data and measurement error problems. Our results make fully efficient estimation of θ feasible, and they generalize and provide insight into a variety of methods that have been proposed for specific problems.</description><subject>Biased sampling</subject><subject>Case control studies</subject><subject>Epidemiology</subject><subject>Estimated likelihood</subject><subject>Estimation</subject><subject>Estimation methods</subject><subject>Incomplete data</subject><subject>Linear regression</subject><subject>Logistics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Missing data</subject><subject>Pseudolikelihood</subject><subject>Regression analysis</subject><subject>Sampling</subject><subject>Sampling rates</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical variance</subject><subject>Statistics</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUU1vFDEMHSGQKIUzFw5z4jZtsvmY5AhLKaAWRLcVEpcoyXjaLPNFPC3sv8fLoL1iyXFkv-fYL0XxkrMTTnbKpa4ra7Q5YYwb9ag4OmQe011oW9WSr54WzxC3jEzX4qi42UCfJp99D3NOsaRwNzZYtmMuM-A0DggVQgdxTg9Q-qEp-4SYhtuy8bMvpzyGDnos00D4W6JgGofnxZPWdwgv_sXj4ub92fX6Q3Xx5fzj-s1FFZU0qjJSB8NlG2wA21glVG20NSEYyXRsQYKGGC3nqhH7fGOBCaV8aLwFH6M4Ll4vfWmMn_eAs6PhInSdH2C8Rydoeca1JuDpAox5RMzQuimn3ued48zt5XN7sdxeLPdXPmJ8WhgZJogHeOj8dsyIwT044TWnY0fOrbUUEvmKfCKXXDgpjLube2oml2a_Uge7_73trjabt8sMrxbaFucxH2grWkorRuVqKSec4feh7PMPR39bK_ft87m7Xn-9-r65fOcuxR9KOqWh</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Lawless, J. F.</creator><creator>Kalbfleisch, J. D.</creator><creator>Wild, C. J.</creator><general>Blackwell Publishers Ltd</general><general>Blackwell Publishers</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19990101</creationdate><title>Semiparametric methods for response-selective and missing data problems in regression</title><author>Lawless, J. F. ; Kalbfleisch, J. D. ; Wild, C. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5485-846b814fb9be9d953578698bb8406cfe4e6ecc9115d3698bd9e0355abda9eacc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biased sampling</topic><topic>Case control studies</topic><topic>Epidemiology</topic><topic>Estimated likelihood</topic><topic>Estimation</topic><topic>Estimation methods</topic><topic>Incomplete data</topic><topic>Linear regression</topic><topic>Logistics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Missing data</topic><topic>Pseudolikelihood</topic><topic>Regression analysis</topic><topic>Sampling</topic><topic>Sampling rates</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical variance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawless, J. F.</creatorcontrib><creatorcontrib>Kalbfleisch, J. D.</creatorcontrib><creatorcontrib>Wild, C. J.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawless, J. F.</au><au>Kalbfleisch, J. D.</au><au>Wild, C. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric methods for response-selective and missing data problems in regression</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>61</volume><issue>2</issue><spage>413</spage><epage>438</epage><pages>413-438</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Suppose that data are generated according to the model f(y∣ x; θ) g(x), where y is a response and x are covariates. We derive and compare semiparametric likelihood and pseudo-likelihood methods for estimating θ for situations in which units generated are not fully observed and in which it is impossible or undesirable to model the covariate distribution. The probability that a unit is fully observed may depend on y, and there may be a subset of covariates which is observed only for a subsample of individuals. Our key assumptions are that the probability that a unit has missing data depends only on which of a finite number of strata that (y, x) belongs to and that the stratum membership is observed for every unit. Applications include case-control studies in epidemiology, field reliability studies and broad classes of missing data and measurement error problems. Our results make fully efficient estimation of θ feasible, and they generalize and provide insight into a variety of methods that have been proposed for specific problems.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-9868.00185</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 1999-01, Vol.61 (2), p.413-438 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_miscellaneous_38680166 |
source | RePEc; Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | Biased sampling Case control studies Epidemiology Estimated likelihood Estimation Estimation methods Incomplete data Linear regression Logistics Maximum likelihood estimation Maximum likelihood estimators Missing data Pseudolikelihood Regression analysis Sampling Sampling rates Statistical analysis Statistical methods Statistical variance Statistics |
title | Semiparametric methods for response-selective and missing data problems in regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20methods%20for%20response-selective%20and%20missing%20data%20problems%20in%20regression&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Lawless,%20J.%20F.&rft.date=1999-01-01&rft.volume=61&rft.issue=2&rft.spage=413&rft.epage=438&rft.pages=413-438&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/1467-9868.00185&rft_dat=%3Cjstor_proqu%3E2680650%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38680166&rft_id=info:pmid/&rft_jstor_id=2680650&rfr_iscdi=true |