Discrete-Time Valuation of American Options with Stochastic Interest Rates

We develop an arbitrage-free discrete time model to price American-style claims for which domestic term structure risk, foreign term structure risk, and currency risk are important. This model combines a discrete version of the Heath, Jarrow, and Morton (1992) term structure model with the binomial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Review of financial studies 1995-04, Vol.8 (1), p.193-234
Hauptverfasser: Amin, Kaushik I., Bodurtha, James N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 1
container_start_page 193
container_title The Review of financial studies
container_volume 8
creator Amin, Kaushik I.
Bodurtha, James N.
description We develop an arbitrage-free discrete time model to price American-style claims for which domestic term structure risk, foreign term structure risk, and currency risk are important. This model combines a discrete version of the Heath, Jarrow, and Morton (1992) term structure model with the binomial model of Cox, Ross, and Rubinstein (1979). It converges (weakly) to the continuous time models in Amin and Jarrow (1991, 1992). The general model is "path dependent" and can be implemented with arbitrary volatility functions to value claims with maturity up to five years. The model is illustrated with applications to long-dated American currency warrants and a cross-rate swap from the quanto class.
doi_str_mv 10.1093/rfs/8.1.193
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38647747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2962194</jstor_id><sourcerecordid>2962194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-96b70e8d8854e2bfc215b1340712eb0bf0bbc0a298c7fe23323408bea340feac3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtbqyauHoOBFts3X7ibHUr8qhYJWryEbZ-mW7aYmWcR_b0rFg-BpIPOQmXkROqdkRIniY1-HsRzREVX8AA2oKPKs5IU8RAMiFc-UyMUxOglhTQihXJABerptgvUQIVs2G8Bvpu1NbFyHXY0nG_CNNR1ebHdPAX82cYVforMrE2Jj8ayL4CFE_GwihFN0VJs2wNlPHaLX-7vl9DGbLx5m08k8s5zLmKmiKgnIdylzAayqLaN5tVumpAwqUtWkqiwxTElb1sA4Z6knKzCp1GAsH6Lr_b9b7z76NF5v0g3QtqYD1wfNZSHKUpQJXv6Ba9f7Lu2mGSkLSWReJHT1H6JMMSqJYiSpm72y3oXgodZb32yM_9KU6F30OkWvpaY6RZ_0xV6vQ3T-lzJVMKoE_waVR39A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292180920</pqid></control><display><type>article</type><title>Discrete-Time Valuation of American Options with Stochastic Interest Rates</title><source>Business Source Complete</source><source>Oxford University Press Journals Digital Archive Legacy</source><source>Periodicals Index Online</source><source>Jstor Complete Legacy</source><creator>Amin, Kaushik I. ; Bodurtha, James N.</creator><creatorcontrib>Amin, Kaushik I. ; Bodurtha, James N.</creatorcontrib><description>We develop an arbitrage-free discrete time model to price American-style claims for which domestic term structure risk, foreign term structure risk, and currency risk are important. This model combines a discrete version of the Heath, Jarrow, and Morton (1992) term structure model with the binomial model of Cox, Ross, and Rubinstein (1979). It converges (weakly) to the continuous time models in Amin and Jarrow (1991, 1992). The general model is "path dependent" and can be implemented with arbitrary volatility functions to value claims with maturity up to five years. The model is illustrated with applications to long-dated American currency warrants and a cross-rate swap from the quanto class.</description><identifier>ISSN: 0893-9454</identifier><identifier>EISSN: 1465-7368</identifier><identifier>DOI: 10.1093/rfs/8.1.193</identifier><language>eng</language><publisher>New York, NY: Oxford University Press</publisher><subject>American dollar ; American option ; Arbitrage ; Commodities ; Currencies ; Currency ; Equity ; Financial instruments ; Fixed exchange rates ; Foreign exchange rates ; Interest rate risk ; Interest rates ; Partial differential equations ; Path dependence ; Pricing ; Securities prices ; Standard deviation ; Stochastic models ; Strike prices ; U.S.A ; Valuation ; Volatility ; Warrants</subject><ispartof>The Review of financial studies, 1995-04, Vol.8 (1), p.193-234</ispartof><rights>Copyright 1995 The Society for Financial Studies</rights><rights>Copyright Oxford University Press(England) Spring 1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-96b70e8d8854e2bfc215b1340712eb0bf0bbc0a298c7fe23323408bea340feac3</citedby><cites>FETCH-LOGICAL-c338t-96b70e8d8854e2bfc215b1340712eb0bf0bbc0a298c7fe23323408bea340feac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2962194$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2962194$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,27856,27911,27912,58004,58237</link.rule.ids></links><search><creatorcontrib>Amin, Kaushik I.</creatorcontrib><creatorcontrib>Bodurtha, James N.</creatorcontrib><title>Discrete-Time Valuation of American Options with Stochastic Interest Rates</title><title>The Review of financial studies</title><description>We develop an arbitrage-free discrete time model to price American-style claims for which domestic term structure risk, foreign term structure risk, and currency risk are important. This model combines a discrete version of the Heath, Jarrow, and Morton (1992) term structure model with the binomial model of Cox, Ross, and Rubinstein (1979). It converges (weakly) to the continuous time models in Amin and Jarrow (1991, 1992). The general model is "path dependent" and can be implemented with arbitrary volatility functions to value claims with maturity up to five years. The model is illustrated with applications to long-dated American currency warrants and a cross-rate swap from the quanto class.</description><subject>American dollar</subject><subject>American option</subject><subject>Arbitrage</subject><subject>Commodities</subject><subject>Currencies</subject><subject>Currency</subject><subject>Equity</subject><subject>Financial instruments</subject><subject>Fixed exchange rates</subject><subject>Foreign exchange rates</subject><subject>Interest rate risk</subject><subject>Interest rates</subject><subject>Partial differential equations</subject><subject>Path dependence</subject><subject>Pricing</subject><subject>Securities prices</subject><subject>Standard deviation</subject><subject>Stochastic models</subject><subject>Strike prices</subject><subject>U.S.A</subject><subject>Valuation</subject><subject>Volatility</subject><subject>Warrants</subject><issn>0893-9454</issn><issn>1465-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp10E1LAzEQBuAgCtbqyauHoOBFts3X7ibHUr8qhYJWryEbZ-mW7aYmWcR_b0rFg-BpIPOQmXkROqdkRIniY1-HsRzREVX8AA2oKPKs5IU8RAMiFc-UyMUxOglhTQihXJABerptgvUQIVs2G8Bvpu1NbFyHXY0nG_CNNR1ebHdPAX82cYVforMrE2Jj8ayL4CFE_GwihFN0VJs2wNlPHaLX-7vl9DGbLx5m08k8s5zLmKmiKgnIdylzAayqLaN5tVumpAwqUtWkqiwxTElb1sA4Z6knKzCp1GAsH6Lr_b9b7z76NF5v0g3QtqYD1wfNZSHKUpQJXv6Ba9f7Lu2mGSkLSWReJHT1H6JMMSqJYiSpm72y3oXgodZb32yM_9KU6F30OkWvpaY6RZ_0xV6vQ3T-lzJVMKoE_waVR39A</recordid><startdate>19950401</startdate><enddate>19950401</enddate><creator>Amin, Kaushik I.</creator><creator>Bodurtha, James N.</creator><general>Oxford University Press</general><general>Published by Oxford University Press for the Society for Financial Studies</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQCIK</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19950401</creationdate><title>Discrete-Time Valuation of American Options with Stochastic Interest Rates</title><author>Amin, Kaushik I. ; Bodurtha, James N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-96b70e8d8854e2bfc215b1340712eb0bf0bbc0a298c7fe23323408bea340feac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>American dollar</topic><topic>American option</topic><topic>Arbitrage</topic><topic>Commodities</topic><topic>Currencies</topic><topic>Currency</topic><topic>Equity</topic><topic>Financial instruments</topic><topic>Fixed exchange rates</topic><topic>Foreign exchange rates</topic><topic>Interest rate risk</topic><topic>Interest rates</topic><topic>Partial differential equations</topic><topic>Path dependence</topic><topic>Pricing</topic><topic>Securities prices</topic><topic>Standard deviation</topic><topic>Stochastic models</topic><topic>Strike prices</topic><topic>U.S.A</topic><topic>Valuation</topic><topic>Volatility</topic><topic>Warrants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, Kaushik I.</creatorcontrib><creatorcontrib>Bodurtha, James N.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 33</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Review of financial studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, Kaushik I.</au><au>Bodurtha, James N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete-Time Valuation of American Options with Stochastic Interest Rates</atitle><jtitle>The Review of financial studies</jtitle><date>1995-04-01</date><risdate>1995</risdate><volume>8</volume><issue>1</issue><spage>193</spage><epage>234</epage><pages>193-234</pages><issn>0893-9454</issn><eissn>1465-7368</eissn><abstract>We develop an arbitrage-free discrete time model to price American-style claims for which domestic term structure risk, foreign term structure risk, and currency risk are important. This model combines a discrete version of the Heath, Jarrow, and Morton (1992) term structure model with the binomial model of Cox, Ross, and Rubinstein (1979). It converges (weakly) to the continuous time models in Amin and Jarrow (1991, 1992). The general model is "path dependent" and can be implemented with arbitrary volatility functions to value claims with maturity up to five years. The model is illustrated with applications to long-dated American currency warrants and a cross-rate swap from the quanto class.</abstract><cop>New York, NY</cop><pub>Oxford University Press</pub><doi>10.1093/rfs/8.1.193</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-9454
ispartof The Review of financial studies, 1995-04, Vol.8 (1), p.193-234
issn 0893-9454
1465-7368
language eng
recordid cdi_proquest_miscellaneous_38647747
source Business Source Complete; Oxford University Press Journals Digital Archive Legacy; Periodicals Index Online; Jstor Complete Legacy
subjects American dollar
American option
Arbitrage
Commodities
Currencies
Currency
Equity
Financial instruments
Fixed exchange rates
Foreign exchange rates
Interest rate risk
Interest rates
Partial differential equations
Path dependence
Pricing
Securities prices
Standard deviation
Stochastic models
Strike prices
U.S.A
Valuation
Volatility
Warrants
title Discrete-Time Valuation of American Options with Stochastic Interest Rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete-Time%20Valuation%20of%20American%20Options%20with%20Stochastic%20Interest%20Rates&rft.jtitle=The%20Review%20of%20financial%20studies&rft.au=Amin,%20Kaushik%20I.&rft.date=1995-04-01&rft.volume=8&rft.issue=1&rft.spage=193&rft.epage=234&rft.pages=193-234&rft.issn=0893-9454&rft.eissn=1465-7368&rft_id=info:doi/10.1093/rfs/8.1.193&rft_dat=%3Cjstor_proqu%3E2962194%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292180920&rft_id=info:pmid/&rft_jstor_id=2962194&rfr_iscdi=true