Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances
This paper obtains the score vector, the information matrix and the asymptotic Cramer-Rao lower bound for the parameters of the linear simultaneous equations model with vector autoregressive disturbances. The Cramer-Rao lower bound for the covariance matrix of a consistent estimator of the parameter...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 1998-07, Vol.85 (1), p.51-74 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | Journal of econometrics |
container_volume | 85 |
creator | Turkington, Darrell A. |
description | This paper obtains the score vector, the information matrix and the asymptotic Cramer-Rao lower bound for the parameters of the linear simultaneous equations model with vector autoregressive disturbances. The Cramer-Rao lower bound for the covariance matrix of a consistent estimator of the parameters of primary interest is obtained for the case where the autoregressive coefficients are known and for the case where these coefficients are unknown, thus enabling us to demonstrate how the lack of knowledge of the autoregressive coefficients increases the bound. These lower bounds are used then to evaluate the asymptotic efficiency of various estimators proposed in the literature. |
doi_str_mv | 10.1016/S0304-4076(97)00094-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38609279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407697000948</els_id><sourcerecordid>38609279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-e739ab91ac9550f0524a502189d288f9cec8c52d43131197aa881d00e1b1caab3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhhtRcFz9CUIQET205rOTnESW1RUWPKjnkElX72Tp7swm6ZH999ZML3PwYqCqcniqeOutpnnN6EdGWffpJxVUtpLq7r3VHyilVrbmSbNhRvO2M1Y9bTZn5HnzopQ7hJQ0YtPcXg1DDBHmSqDUOPka00ziTOoOyBhn8JmUOC1j9TOkpRC4X05MIVPqYSR_Yt2RA4SaMvELZrjNUEo8AOljqUve-jlAedk8G_xY4NVjvWh-f736dXnd3vz49v3yy00bFGe1BS2s31rmg1WKDlRx6RXlzNieGzPYAMEg2UvBBGNWe28M6ykFtmXB-624aN6tc_c53S-4kptiCTCOq3wnTEct1xbBN_-Ad2nJM2pzzHYdZ0JIhNQKhZxKyTC4fUaP8oNj1B29dyfv3dFYZ7U7ee8M9l2vfRn2EM5NgC-kOU3u4IQ3CtMDBrPWYInHL8YeQzGnpdvVCUe9fdTpS_DjkNHOWM4juRRSa47Y5xUDNPcQIbtyvGqAPmY8jutT_I_mv1mRsp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196621334</pqid></control><display><type>article</type><title>Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances</title><source>RePEc</source><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Turkington, Darrell A.</creator><creatorcontrib>Turkington, Darrell A.</creatorcontrib><description>This paper obtains the score vector, the information matrix and the asymptotic Cramer-Rao lower bound for the parameters of the linear simultaneous equations model with vector autoregressive disturbances. The Cramer-Rao lower bound for the covariance matrix of a consistent estimator of the parameters of primary interest is obtained for the case where the autoregressive coefficients are known and for the case where these coefficients are unknown, thus enabling us to demonstrate how the lack of knowledge of the autoregressive coefficients increases the bound. These lower bounds are used then to evaluate the asymptotic efficiency of various estimators proposed in the literature.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/S0304-4076(97)00094-8</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic efficiency ; Econometrics ; Estimation ; Exact sciences and technology ; Linear models ; Mathematical models ; Mathematics ; Multivariate analysis ; Nonparametric inference ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Statistics ; Studies ; Vector autoregressive disturbances</subject><ispartof>Journal of econometrics, 1998-07, Vol.85 (1), p.51-74</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-e739ab91ac9550f0524a502189d288f9cec8c52d43131197aa881d00e1b1caab3</citedby><cites>FETCH-LOGICAL-c521t-e739ab91ac9550f0524a502189d288f9cec8c52d43131197aa881d00e1b1caab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-4076(97)00094-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2434772$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a85_3ay_3a1998_3ai_3a1_3ap_3a51-74.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Turkington, Darrell A.</creatorcontrib><title>Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances</title><title>Journal of econometrics</title><description>This paper obtains the score vector, the information matrix and the asymptotic Cramer-Rao lower bound for the parameters of the linear simultaneous equations model with vector autoregressive disturbances. The Cramer-Rao lower bound for the covariance matrix of a consistent estimator of the parameters of primary interest is obtained for the case where the autoregressive coefficients are known and for the case where these coefficients are unknown, thus enabling us to demonstrate how the lack of knowledge of the autoregressive coefficients increases the bound. These lower bounds are used then to evaluate the asymptotic efficiency of various estimators proposed in the literature.</description><subject>Asymptotic efficiency</subject><subject>Econometrics</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Linear models</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Studies</subject><subject>Vector autoregressive disturbances</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkU2LFDEQhhtRcFz9CUIQET205rOTnESW1RUWPKjnkElX72Tp7swm6ZH999ZML3PwYqCqcniqeOutpnnN6EdGWffpJxVUtpLq7r3VHyilVrbmSbNhRvO2M1Y9bTZn5HnzopQ7hJQ0YtPcXg1DDBHmSqDUOPka00ziTOoOyBhn8JmUOC1j9TOkpRC4X05MIVPqYSR_Yt2RA4SaMvELZrjNUEo8AOljqUve-jlAedk8G_xY4NVjvWh-f736dXnd3vz49v3yy00bFGe1BS2s31rmg1WKDlRx6RXlzNieGzPYAMEg2UvBBGNWe28M6ykFtmXB-624aN6tc_c53S-4kptiCTCOq3wnTEct1xbBN_-Ad2nJM2pzzHYdZ0JIhNQKhZxKyTC4fUaP8oNj1B29dyfv3dFYZ7U7ee8M9l2vfRn2EM5NgC-kOU3u4IQ3CtMDBrPWYInHL8YeQzGnpdvVCUe9fdTpS_DjkNHOWM4juRRSa47Y5xUDNPcQIbtyvGqAPmY8jutT_I_mv1mRsp8</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Turkington, Darrell A.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19980701</creationdate><title>Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances</title><author>Turkington, Darrell A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-e739ab91ac9550f0524a502189d288f9cec8c52d43131197aa881d00e1b1caab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Asymptotic efficiency</topic><topic>Econometrics</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Linear models</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Studies</topic><topic>Vector autoregressive disturbances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turkington, Darrell A.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turkington, Darrell A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances</atitle><jtitle>Journal of econometrics</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>85</volume><issue>1</issue><spage>51</spage><epage>74</epage><pages>51-74</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper obtains the score vector, the information matrix and the asymptotic Cramer-Rao lower bound for the parameters of the linear simultaneous equations model with vector autoregressive disturbances. The Cramer-Rao lower bound for the covariance matrix of a consistent estimator of the parameters of primary interest is obtained for the case where the autoregressive coefficients are known and for the case where these coefficients are unknown, thus enabling us to demonstrate how the lack of knowledge of the autoregressive coefficients increases the bound. These lower bounds are used then to evaluate the asymptotic efficiency of various estimators proposed in the literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-4076(97)00094-8</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 1998-07, Vol.85 (1), p.51-74 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_miscellaneous_38609279 |
source | RePEc; ScienceDirect Freedom Collection (Elsevier) |
subjects | Asymptotic efficiency Econometrics Estimation Exact sciences and technology Linear models Mathematical models Mathematics Multivariate analysis Nonparametric inference Probability and statistics Regression analysis Sciences and techniques of general use Statistics Studies Vector autoregressive disturbances |
title | Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20estimation%20in%20the%20linear%20simultaneous%20equations%20model%20with%20vector%20autoregressive%20disturbances&rft.jtitle=Journal%20of%20econometrics&rft.au=Turkington,%20Darrell%20A.&rft.date=1998-07-01&rft.volume=85&rft.issue=1&rft.spage=51&rft.epage=74&rft.pages=51-74&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/S0304-4076(97)00094-8&rft_dat=%3Cproquest_cross%3E38609279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196621334&rft_id=info:pmid/&rft_els_id=S0304407697000948&rfr_iscdi=true |