Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances

This paper obtains the score vector, the information matrix and the asymptotic Cramer-Rao lower bound for the parameters of the linear simultaneous equations model with vector autoregressive disturbances. The Cramer-Rao lower bound for the covariance matrix of a consistent estimator of the parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 1998-07, Vol.85 (1), p.51-74
1. Verfasser: Turkington, Darrell A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 1
container_start_page 51
container_title Journal of econometrics
container_volume 85
creator Turkington, Darrell A.
description This paper obtains the score vector, the information matrix and the asymptotic Cramer-Rao lower bound for the parameters of the linear simultaneous equations model with vector autoregressive disturbances. The Cramer-Rao lower bound for the covariance matrix of a consistent estimator of the parameters of primary interest is obtained for the case where the autoregressive coefficients are known and for the case where these coefficients are unknown, thus enabling us to demonstrate how the lack of knowledge of the autoregressive coefficients increases the bound. These lower bounds are used then to evaluate the asymptotic efficiency of various estimators proposed in the literature.
doi_str_mv 10.1016/S0304-4076(97)00094-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38609279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407697000948</els_id><sourcerecordid>38609279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-e739ab91ac9550f0524a502189d288f9cec8c52d43131197aa881d00e1b1caab3</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhhtRcFz9CUIQET205rOTnESW1RUWPKjnkElX72Tp7swm6ZH999ZML3PwYqCqcniqeOutpnnN6EdGWffpJxVUtpLq7r3VHyilVrbmSbNhRvO2M1Y9bTZn5HnzopQ7hJQ0YtPcXg1DDBHmSqDUOPka00ziTOoOyBhn8JmUOC1j9TOkpRC4X05MIVPqYSR_Yt2RA4SaMvELZrjNUEo8AOljqUve-jlAedk8G_xY4NVjvWh-f736dXnd3vz49v3yy00bFGe1BS2s31rmg1WKDlRx6RXlzNieGzPYAMEg2UvBBGNWe28M6ykFtmXB-624aN6tc_c53S-4kptiCTCOq3wnTEct1xbBN_-Ad2nJM2pzzHYdZ0JIhNQKhZxKyTC4fUaP8oNj1B29dyfv3dFYZ7U7ee8M9l2vfRn2EM5NgC-kOU3u4IQ3CtMDBrPWYInHL8YeQzGnpdvVCUe9fdTpS_DjkNHOWM4juRRSa47Y5xUDNPcQIbtyvGqAPmY8jutT_I_mv1mRsp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196621334</pqid></control><display><type>article</type><title>Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances</title><source>RePEc</source><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Turkington, Darrell A.</creator><creatorcontrib>Turkington, Darrell A.</creatorcontrib><description>This paper obtains the score vector, the information matrix and the asymptotic Cramer-Rao lower bound for the parameters of the linear simultaneous equations model with vector autoregressive disturbances. The Cramer-Rao lower bound for the covariance matrix of a consistent estimator of the parameters of primary interest is obtained for the case where the autoregressive coefficients are known and for the case where these coefficients are unknown, thus enabling us to demonstrate how the lack of knowledge of the autoregressive coefficients increases the bound. These lower bounds are used then to evaluate the asymptotic efficiency of various estimators proposed in the literature.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/S0304-4076(97)00094-8</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic efficiency ; Econometrics ; Estimation ; Exact sciences and technology ; Linear models ; Mathematical models ; Mathematics ; Multivariate analysis ; Nonparametric inference ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Statistics ; Studies ; Vector autoregressive disturbances</subject><ispartof>Journal of econometrics, 1998-07, Vol.85 (1), p.51-74</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jul 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-e739ab91ac9550f0524a502189d288f9cec8c52d43131197aa881d00e1b1caab3</citedby><cites>FETCH-LOGICAL-c521t-e739ab91ac9550f0524a502189d288f9cec8c52d43131197aa881d00e1b1caab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-4076(97)00094-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2434772$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a85_3ay_3a1998_3ai_3a1_3ap_3a51-74.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Turkington, Darrell A.</creatorcontrib><title>Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances</title><title>Journal of econometrics</title><description>This paper obtains the score vector, the information matrix and the asymptotic Cramer-Rao lower bound for the parameters of the linear simultaneous equations model with vector autoregressive disturbances. The Cramer-Rao lower bound for the covariance matrix of a consistent estimator of the parameters of primary interest is obtained for the case where the autoregressive coefficients are known and for the case where these coefficients are unknown, thus enabling us to demonstrate how the lack of knowledge of the autoregressive coefficients increases the bound. These lower bounds are used then to evaluate the asymptotic efficiency of various estimators proposed in the literature.</description><subject>Asymptotic efficiency</subject><subject>Econometrics</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Linear models</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Studies</subject><subject>Vector autoregressive disturbances</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkU2LFDEQhhtRcFz9CUIQET205rOTnESW1RUWPKjnkElX72Tp7swm6ZH999ZML3PwYqCqcniqeOutpnnN6EdGWffpJxVUtpLq7r3VHyilVrbmSbNhRvO2M1Y9bTZn5HnzopQ7hJQ0YtPcXg1DDBHmSqDUOPka00ziTOoOyBhn8JmUOC1j9TOkpRC4X05MIVPqYSR_Yt2RA4SaMvELZrjNUEo8AOljqUve-jlAedk8G_xY4NVjvWh-f736dXnd3vz49v3yy00bFGe1BS2s31rmg1WKDlRx6RXlzNieGzPYAMEg2UvBBGNWe28M6ykFtmXB-624aN6tc_c53S-4kptiCTCOq3wnTEct1xbBN_-Ad2nJM2pzzHYdZ0JIhNQKhZxKyTC4fUaP8oNj1B29dyfv3dFYZ7U7ee8M9l2vfRn2EM5NgC-kOU3u4IQ3CtMDBrPWYInHL8YeQzGnpdvVCUe9fdTpS_DjkNHOWM4juRRSa47Y5xUDNPcQIbtyvGqAPmY8jutT_I_mv1mRsp8</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Turkington, Darrell A.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19980701</creationdate><title>Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances</title><author>Turkington, Darrell A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-e739ab91ac9550f0524a502189d288f9cec8c52d43131197aa881d00e1b1caab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Asymptotic efficiency</topic><topic>Econometrics</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Linear models</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Studies</topic><topic>Vector autoregressive disturbances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turkington, Darrell A.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turkington, Darrell A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances</atitle><jtitle>Journal of econometrics</jtitle><date>1998-07-01</date><risdate>1998</risdate><volume>85</volume><issue>1</issue><spage>51</spage><epage>74</epage><pages>51-74</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper obtains the score vector, the information matrix and the asymptotic Cramer-Rao lower bound for the parameters of the linear simultaneous equations model with vector autoregressive disturbances. The Cramer-Rao lower bound for the covariance matrix of a consistent estimator of the parameters of primary interest is obtained for the case where the autoregressive coefficients are known and for the case where these coefficients are unknown, thus enabling us to demonstrate how the lack of knowledge of the autoregressive coefficients increases the bound. These lower bounds are used then to evaluate the asymptotic efficiency of various estimators proposed in the literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-4076(97)00094-8</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 1998-07, Vol.85 (1), p.51-74
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_38609279
source RePEc; ScienceDirect Freedom Collection (Elsevier)
subjects Asymptotic efficiency
Econometrics
Estimation
Exact sciences and technology
Linear models
Mathematical models
Mathematics
Multivariate analysis
Nonparametric inference
Probability and statistics
Regression analysis
Sciences and techniques of general use
Statistics
Studies
Vector autoregressive disturbances
title Efficient estimation in the linear simultaneous equations model with vector autoregressive disturbances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20estimation%20in%20the%20linear%20simultaneous%20equations%20model%20with%20vector%20autoregressive%20disturbances&rft.jtitle=Journal%20of%20econometrics&rft.au=Turkington,%20Darrell%20A.&rft.date=1998-07-01&rft.volume=85&rft.issue=1&rft.spage=51&rft.epage=74&rft.pages=51-74&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/S0304-4076(97)00094-8&rft_dat=%3Cproquest_cross%3E38609279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196621334&rft_id=info:pmid/&rft_els_id=S0304407697000948&rfr_iscdi=true