Geometric construction by assembling solved subfigures

Among the expected contributions of Artificial Intelligence to Computer-Aided Design is the possibility of constructing a geometric object, the description of which is given by a system of topological and dimensional constraints. This paper presents the theoretical foundations of an original approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 1998-02, Vol.99 (1), p.73-119
Hauptverfasser: Dufourd, Jean-François, Mathis, Pascal, Schreck, Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 1
container_start_page 73
container_title Artificial intelligence
container_volume 99
creator Dufourd, Jean-François
Mathis, Pascal
Schreck, Pascal
description Among the expected contributions of Artificial Intelligence to Computer-Aided Design is the possibility of constructing a geometric object, the description of which is given by a system of topological and dimensional constraints. This paper presents the theoretical foundations of an original approach to formal geometric construction of rigid bodies in the Euclidian plane, based on invariance under displacements and relaxation of positional constraints. This general idea allows to explain in greater detail several methods proposed in the literature. One of the advantages of this approach is its ability to efficiently generalize and join together different methods for local solving. The paper also describes the main features of a powerful and extensible operational prototype based on these ideas, which can be viewed as a simple multi-agent system with a blackboard. Finally, some significant examples solved by this prototype are presented.
doi_str_mv 10.1016/S0004-3702(97)00070-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38581834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370297000702</els_id><sourcerecordid>38581834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9555f8bd1bb471ea8fe3804451570f1a7c4817d41b6afaad16fcaf6add2b2cf93</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF4eQehKdFFN2qZJVyKDjsKAC3UdcjkZIm0z5rQD8_Z2ZsStq8MP_4XzEXLF6B2jrL5_p5RWeSlocdOI20kImhdHZMakKHLRFOyYzP4sp-QM8WuSZdOwGakXEDsYUrCZjT0OabRDiH1mtplGhM60oV9lGNsNuAxH48NqTIAX5MTrFuHy956Tz-enj_lLvnxbvM4fl7ktJR_yhnPupXHMmEow0NJDKWlVccYF9UwLW0kmXMVMrb3WjtXeal9r5wpTWN-U5-T60LtO8XsEHFQX0ELb6h7iiGpakUyW1WTkB6NNETGBV-sUOp22ilG1o6T2lNQOgWqE2lNSxZR7OORg-mITICm0AXoLLiSwg3Ix_NPwA9--b7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38581834</pqid></control><display><type>article</type><title>Geometric construction by assembling solved subfigures</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dufourd, Jean-François ; Mathis, Pascal ; Schreck, Pascal</creator><creatorcontrib>Dufourd, Jean-François ; Mathis, Pascal ; Schreck, Pascal</creatorcontrib><description>Among the expected contributions of Artificial Intelligence to Computer-Aided Design is the possibility of constructing a geometric object, the description of which is given by a system of topological and dimensional constraints. This paper presents the theoretical foundations of an original approach to formal geometric construction of rigid bodies in the Euclidian plane, based on invariance under displacements and relaxation of positional constraints. This general idea allows to explain in greater detail several methods proposed in the literature. One of the advantages of this approach is its ability to efficiently generalize and join together different methods for local solving. The paper also describes the main features of a powerful and extensible operational prototype based on these ideas, which can be viewed as a simple multi-agent system with a blackboard. Finally, some significant examples solved by this prototype are presented.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/S0004-3702(97)00070-2</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial intelligence ; Assembling of figures ; Blackboard ; Computer-aided design ; Geometric formal construction ; Geometry ; Local solving ; Multi-agent system ; System of geometric constraints ; Topology</subject><ispartof>Artificial intelligence, 1998-02, Vol.99 (1), p.73-119</ispartof><rights>1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9555f8bd1bb471ea8fe3804451570f1a7c4817d41b6afaad16fcaf6add2b2cf93</citedby><cites>FETCH-LOGICAL-c385t-9555f8bd1bb471ea8fe3804451570f1a7c4817d41b6afaad16fcaf6add2b2cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0004-3702(97)00070-2$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dufourd, Jean-François</creatorcontrib><creatorcontrib>Mathis, Pascal</creatorcontrib><creatorcontrib>Schreck, Pascal</creatorcontrib><title>Geometric construction by assembling solved subfigures</title><title>Artificial intelligence</title><description>Among the expected contributions of Artificial Intelligence to Computer-Aided Design is the possibility of constructing a geometric object, the description of which is given by a system of topological and dimensional constraints. This paper presents the theoretical foundations of an original approach to formal geometric construction of rigid bodies in the Euclidian plane, based on invariance under displacements and relaxation of positional constraints. This general idea allows to explain in greater detail several methods proposed in the literature. One of the advantages of this approach is its ability to efficiently generalize and join together different methods for local solving. The paper also describes the main features of a powerful and extensible operational prototype based on these ideas, which can be viewed as a simple multi-agent system with a blackboard. Finally, some significant examples solved by this prototype are presented.</description><subject>Artificial intelligence</subject><subject>Assembling of figures</subject><subject>Blackboard</subject><subject>Computer-aided design</subject><subject>Geometric formal construction</subject><subject>Geometry</subject><subject>Local solving</subject><subject>Multi-agent system</subject><subject>System of geometric constraints</subject><subject>Topology</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF4eQehKdFFN2qZJVyKDjsKAC3UdcjkZIm0z5rQD8_Z2ZsStq8MP_4XzEXLF6B2jrL5_p5RWeSlocdOI20kImhdHZMakKHLRFOyYzP4sp-QM8WuSZdOwGakXEDsYUrCZjT0OabRDiH1mtplGhM60oV9lGNsNuAxH48NqTIAX5MTrFuHy956Tz-enj_lLvnxbvM4fl7ktJR_yhnPupXHMmEow0NJDKWlVccYF9UwLW0kmXMVMrb3WjtXeal9r5wpTWN-U5-T60LtO8XsEHFQX0ELb6h7iiGpakUyW1WTkB6NNETGBV-sUOp22ilG1o6T2lNQOgWqE2lNSxZR7OORg-mITICm0AXoLLiSwg3Ix_NPwA9--b7U</recordid><startdate>19980201</startdate><enddate>19980201</enddate><creator>Dufourd, Jean-François</creator><creator>Mathis, Pascal</creator><creator>Schreck, Pascal</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19980201</creationdate><title>Geometric construction by assembling solved subfigures</title><author>Dufourd, Jean-François ; Mathis, Pascal ; Schreck, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9555f8bd1bb471ea8fe3804451570f1a7c4817d41b6afaad16fcaf6add2b2cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Artificial intelligence</topic><topic>Assembling of figures</topic><topic>Blackboard</topic><topic>Computer-aided design</topic><topic>Geometric formal construction</topic><topic>Geometry</topic><topic>Local solving</topic><topic>Multi-agent system</topic><topic>System of geometric constraints</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dufourd, Jean-François</creatorcontrib><creatorcontrib>Mathis, Pascal</creatorcontrib><creatorcontrib>Schreck, Pascal</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dufourd, Jean-François</au><au>Mathis, Pascal</au><au>Schreck, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric construction by assembling solved subfigures</atitle><jtitle>Artificial intelligence</jtitle><date>1998-02-01</date><risdate>1998</risdate><volume>99</volume><issue>1</issue><spage>73</spage><epage>119</epage><pages>73-119</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>Among the expected contributions of Artificial Intelligence to Computer-Aided Design is the possibility of constructing a geometric object, the description of which is given by a system of topological and dimensional constraints. This paper presents the theoretical foundations of an original approach to formal geometric construction of rigid bodies in the Euclidian plane, based on invariance under displacements and relaxation of positional constraints. This general idea allows to explain in greater detail several methods proposed in the literature. One of the advantages of this approach is its ability to efficiently generalize and join together different methods for local solving. The paper also describes the main features of a powerful and extensible operational prototype based on these ideas, which can be viewed as a simple multi-agent system with a blackboard. Finally, some significant examples solved by this prototype are presented.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0004-3702(97)00070-2</doi><tpages>47</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 1998-02, Vol.99 (1), p.73-119
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_miscellaneous_38581834
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Artificial intelligence
Assembling of figures
Blackboard
Computer-aided design
Geometric formal construction
Geometry
Local solving
Multi-agent system
System of geometric constraints
Topology
title Geometric construction by assembling solved subfigures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20construction%20by%20assembling%20solved%20subfigures&rft.jtitle=Artificial%20intelligence&rft.au=Dufourd,%20Jean-Fran%C3%A7ois&rft.date=1998-02-01&rft.volume=99&rft.issue=1&rft.spage=73&rft.epage=119&rft.pages=73-119&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/S0004-3702(97)00070-2&rft_dat=%3Cproquest_cross%3E38581834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38581834&rft_id=info:pmid/&rft_els_id=S0004370297000702&rfr_iscdi=true