Geometric construction by assembling solved subfigures
Among the expected contributions of Artificial Intelligence to Computer-Aided Design is the possibility of constructing a geometric object, the description of which is given by a system of topological and dimensional constraints. This paper presents the theoretical foundations of an original approac...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence 1998-02, Vol.99 (1), p.73-119 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Artificial intelligence |
container_volume | 99 |
creator | Dufourd, Jean-François Mathis, Pascal Schreck, Pascal |
description | Among the expected contributions of Artificial Intelligence to Computer-Aided Design is the possibility of constructing a geometric object, the description of which is given by a system of topological and dimensional constraints. This paper presents the theoretical foundations of an original approach to formal geometric construction of rigid bodies in the Euclidian plane, based on invariance under displacements and relaxation of positional constraints. This general idea allows to explain in greater detail several methods proposed in the literature. One of the advantages of this approach is its ability to efficiently generalize and join together different methods for local solving. The paper also describes the main features of a powerful and extensible operational prototype based on these ideas, which can be viewed as a simple multi-agent system with a blackboard. Finally, some significant examples solved by this prototype are presented. |
doi_str_mv | 10.1016/S0004-3702(97)00070-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38581834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370297000702</els_id><sourcerecordid>38581834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9555f8bd1bb471ea8fe3804451570f1a7c4817d41b6afaad16fcaf6add2b2cf93</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF4eQehKdFFN2qZJVyKDjsKAC3UdcjkZIm0z5rQD8_Z2ZsStq8MP_4XzEXLF6B2jrL5_p5RWeSlocdOI20kImhdHZMakKHLRFOyYzP4sp-QM8WuSZdOwGakXEDsYUrCZjT0OabRDiH1mtplGhM60oV9lGNsNuAxH48NqTIAX5MTrFuHy956Tz-enj_lLvnxbvM4fl7ktJR_yhnPupXHMmEow0NJDKWlVccYF9UwLW0kmXMVMrb3WjtXeal9r5wpTWN-U5-T60LtO8XsEHFQX0ELb6h7iiGpakUyW1WTkB6NNETGBV-sUOp22ilG1o6T2lNQOgWqE2lNSxZR7OORg-mITICm0AXoLLiSwg3Ix_NPwA9--b7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38581834</pqid></control><display><type>article</type><title>Geometric construction by assembling solved subfigures</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dufourd, Jean-François ; Mathis, Pascal ; Schreck, Pascal</creator><creatorcontrib>Dufourd, Jean-François ; Mathis, Pascal ; Schreck, Pascal</creatorcontrib><description>Among the expected contributions of Artificial Intelligence to Computer-Aided Design is the possibility of constructing a geometric object, the description of which is given by a system of topological and dimensional constraints. This paper presents the theoretical foundations of an original approach to formal geometric construction of rigid bodies in the Euclidian plane, based on invariance under displacements and relaxation of positional constraints. This general idea allows to explain in greater detail several methods proposed in the literature. One of the advantages of this approach is its ability to efficiently generalize and join together different methods for local solving. The paper also describes the main features of a powerful and extensible operational prototype based on these ideas, which can be viewed as a simple multi-agent system with a blackboard. Finally, some significant examples solved by this prototype are presented.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/S0004-3702(97)00070-2</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial intelligence ; Assembling of figures ; Blackboard ; Computer-aided design ; Geometric formal construction ; Geometry ; Local solving ; Multi-agent system ; System of geometric constraints ; Topology</subject><ispartof>Artificial intelligence, 1998-02, Vol.99 (1), p.73-119</ispartof><rights>1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9555f8bd1bb471ea8fe3804451570f1a7c4817d41b6afaad16fcaf6add2b2cf93</citedby><cites>FETCH-LOGICAL-c385t-9555f8bd1bb471ea8fe3804451570f1a7c4817d41b6afaad16fcaf6add2b2cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0004-3702(97)00070-2$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dufourd, Jean-François</creatorcontrib><creatorcontrib>Mathis, Pascal</creatorcontrib><creatorcontrib>Schreck, Pascal</creatorcontrib><title>Geometric construction by assembling solved subfigures</title><title>Artificial intelligence</title><description>Among the expected contributions of Artificial Intelligence to Computer-Aided Design is the possibility of constructing a geometric object, the description of which is given by a system of topological and dimensional constraints. This paper presents the theoretical foundations of an original approach to formal geometric construction of rigid bodies in the Euclidian plane, based on invariance under displacements and relaxation of positional constraints. This general idea allows to explain in greater detail several methods proposed in the literature. One of the advantages of this approach is its ability to efficiently generalize and join together different methods for local solving. The paper also describes the main features of a powerful and extensible operational prototype based on these ideas, which can be viewed as a simple multi-agent system with a blackboard. Finally, some significant examples solved by this prototype are presented.</description><subject>Artificial intelligence</subject><subject>Assembling of figures</subject><subject>Blackboard</subject><subject>Computer-aided design</subject><subject>Geometric formal construction</subject><subject>Geometry</subject><subject>Local solving</subject><subject>Multi-agent system</subject><subject>System of geometric constraints</subject><subject>Topology</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF4eQehKdFFN2qZJVyKDjsKAC3UdcjkZIm0z5rQD8_Z2ZsStq8MP_4XzEXLF6B2jrL5_p5RWeSlocdOI20kImhdHZMakKHLRFOyYzP4sp-QM8WuSZdOwGakXEDsYUrCZjT0OabRDiH1mtplGhM60oV9lGNsNuAxH48NqTIAX5MTrFuHy956Tz-enj_lLvnxbvM4fl7ktJR_yhnPupXHMmEow0NJDKWlVccYF9UwLW0kmXMVMrb3WjtXeal9r5wpTWN-U5-T60LtO8XsEHFQX0ELb6h7iiGpakUyW1WTkB6NNETGBV-sUOp22ilG1o6T2lNQOgWqE2lNSxZR7OORg-mITICm0AXoLLiSwg3Ix_NPwA9--b7U</recordid><startdate>19980201</startdate><enddate>19980201</enddate><creator>Dufourd, Jean-François</creator><creator>Mathis, Pascal</creator><creator>Schreck, Pascal</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19980201</creationdate><title>Geometric construction by assembling solved subfigures</title><author>Dufourd, Jean-François ; Mathis, Pascal ; Schreck, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9555f8bd1bb471ea8fe3804451570f1a7c4817d41b6afaad16fcaf6add2b2cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Artificial intelligence</topic><topic>Assembling of figures</topic><topic>Blackboard</topic><topic>Computer-aided design</topic><topic>Geometric formal construction</topic><topic>Geometry</topic><topic>Local solving</topic><topic>Multi-agent system</topic><topic>System of geometric constraints</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dufourd, Jean-François</creatorcontrib><creatorcontrib>Mathis, Pascal</creatorcontrib><creatorcontrib>Schreck, Pascal</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dufourd, Jean-François</au><au>Mathis, Pascal</au><au>Schreck, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric construction by assembling solved subfigures</atitle><jtitle>Artificial intelligence</jtitle><date>1998-02-01</date><risdate>1998</risdate><volume>99</volume><issue>1</issue><spage>73</spage><epage>119</epage><pages>73-119</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>Among the expected contributions of Artificial Intelligence to Computer-Aided Design is the possibility of constructing a geometric object, the description of which is given by a system of topological and dimensional constraints. This paper presents the theoretical foundations of an original approach to formal geometric construction of rigid bodies in the Euclidian plane, based on invariance under displacements and relaxation of positional constraints. This general idea allows to explain in greater detail several methods proposed in the literature. One of the advantages of this approach is its ability to efficiently generalize and join together different methods for local solving. The paper also describes the main features of a powerful and extensible operational prototype based on these ideas, which can be viewed as a simple multi-agent system with a blackboard. Finally, some significant examples solved by this prototype are presented.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0004-3702(97)00070-2</doi><tpages>47</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-3702 |
ispartof | Artificial intelligence, 1998-02, Vol.99 (1), p.73-119 |
issn | 0004-3702 1872-7921 |
language | eng |
recordid | cdi_proquest_miscellaneous_38581834 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Artificial intelligence Assembling of figures Blackboard Computer-aided design Geometric formal construction Geometry Local solving Multi-agent system System of geometric constraints Topology |
title | Geometric construction by assembling solved subfigures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20construction%20by%20assembling%20solved%20subfigures&rft.jtitle=Artificial%20intelligence&rft.au=Dufourd,%20Jean-Fran%C3%A7ois&rft.date=1998-02-01&rft.volume=99&rft.issue=1&rft.spage=73&rft.epage=119&rft.pages=73-119&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/S0004-3702(97)00070-2&rft_dat=%3Cproquest_cross%3E38581834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=38581834&rft_id=info:pmid/&rft_els_id=S0004370297000702&rfr_iscdi=true |