Computing compound distributions faster

The use of Panjer's algorithm has meanwhile become a widespread standard technique for actuaries (Kuon et al., 1955). Panjer's recursion formula is used for the evaluation of compound distributions and can be applied to life and general insurance problems. The discrete version of Panjer�...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 1997-06, Vol.20 (1), p.23-34
Hauptverfasser: den Iseger, P.W., Smith, M.A.J., Dekker, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 23
container_title Insurance, mathematics & economics
container_volume 20
creator den Iseger, P.W.
Smith, M.A.J.
Dekker, R.
description The use of Panjer's algorithm has meanwhile become a widespread standard technique for actuaries (Kuon et al., 1955). Panjer's recursion formula is used for the evaluation of compound distributions and can be applied to life and general insurance problems. The discrete version of Panjer's recursion formula is often applied to continuous distributions by discretizing the underlying distribution at n equidistant points, covering a large enough interval, say [0, nΔ]. Panjer's recursion returns a discrete function as an approximation of the compound distribution. It is claimed that this procedure is fast, ( O( n 2)), accurate, ( O( Δ 2)) and easy to understand, cf. Bühlmann (1984), Dickson (1995) and Xie (1989). In this article we propose a method based on cubic splines. The accuracy of the method is better, namely O( Δ 5). The computation time is O( n 2) and hence for the same accuracy much faster and furthermore, the method returns a twice continuously differentiable function.
doi_str_mv 10.1016/S0167-6687(97)00002-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38569760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668797000024</els_id><sourcerecordid>13036869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-41c248a3b3e8594b310114985b4da82aaf04b3a47b1d6530c110aff7b4fe98a73</originalsourceid><addsrcrecordid>eNqFUMtKHEEULSSCE5NPCAwukrjoWNX1XgUZogYEF-r6Ul19OymZfqSqW_DvveOICzcpuA9unXM4HMa-CP5DcGHObqnZyhhnv3t7yunVlTpgK-GsrLTX_gNbvUGO2MdSHggjvLEr9m0z9tMyp-HPOtI2LkO7blOZc2roOg5l3YUyY_7EDruwLfj5dR6z-4tfd5ur6vrm8vfm_LqK2vC5UiLWygXZSHTaq0aSQaG8041qg6tD6Dgdg7KNaI2WPArBQ9fZRnXoXbDymH3d6055_LdgmaFPJeJ2GwYclwLSaeOt4QQ8eQd8GJc8kDeouRNGO2cIpPegmMdSMnYw5dSH_ASCwy47eMkOdsGAt_CSHSjiXe15GSeMbyRETENZ-gCPIEPNqT1RCU9UGdJupZp2fxKkgr9zT1I_91JIqT0mzFBiwiFimzLGGdox_cfMM0bQjW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208165886</pqid></control><display><type>article</type><title>Computing compound distributions faster</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><creator>den Iseger, P.W. ; Smith, M.A.J. ; Dekker, R.</creator><creatorcontrib>den Iseger, P.W. ; Smith, M.A.J. ; Dekker, R.</creatorcontrib><description>The use of Panjer's algorithm has meanwhile become a widespread standard technique for actuaries (Kuon et al., 1955). Panjer's recursion formula is used for the evaluation of compound distributions and can be applied to life and general insurance problems. The discrete version of Panjer's recursion formula is often applied to continuous distributions by discretizing the underlying distribution at n equidistant points, covering a large enough interval, say [0, nΔ]. Panjer's recursion returns a discrete function as an approximation of the compound distribution. It is claimed that this procedure is fast, ( O( n 2)), accurate, ( O( Δ 2)) and easy to understand, cf. Bühlmann (1984), Dickson (1995) and Xie (1989). In this article we propose a method based on cubic splines. The accuracy of the method is better, namely O( Δ 5). The computation time is O( n 2) and hence for the same accuracy much faster and furthermore, the method returns a twice continuously differentiable function.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/S0167-6687(97)00002-4</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Actuaries ; Algorithms ; Compound distributions ; Distribution ; Life insurance ; Mathematical models ; Recursions ; Risk ; Studies</subject><ispartof>Insurance, mathematics &amp; economics, 1997-06, Vol.20 (1), p.23-34</ispartof><rights>1997</rights><rights>Copyright Elsevier Sequoia S.A. Jun 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-41c248a3b3e8594b310114985b4da82aaf04b3a47b1d6530c110aff7b4fe98a73</citedby><cites>FETCH-LOGICAL-c560t-41c248a3b3e8594b310114985b4da82aaf04b3a47b1d6530c110aff7b4fe98a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668797000024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a20_3ay_3a1997_3ai_3a1_3ap_3a23-34.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>den Iseger, P.W.</creatorcontrib><creatorcontrib>Smith, M.A.J.</creatorcontrib><creatorcontrib>Dekker, R.</creatorcontrib><title>Computing compound distributions faster</title><title>Insurance, mathematics &amp; economics</title><description>The use of Panjer's algorithm has meanwhile become a widespread standard technique for actuaries (Kuon et al., 1955). Panjer's recursion formula is used for the evaluation of compound distributions and can be applied to life and general insurance problems. The discrete version of Panjer's recursion formula is often applied to continuous distributions by discretizing the underlying distribution at n equidistant points, covering a large enough interval, say [0, nΔ]. Panjer's recursion returns a discrete function as an approximation of the compound distribution. It is claimed that this procedure is fast, ( O( n 2)), accurate, ( O( Δ 2)) and easy to understand, cf. Bühlmann (1984), Dickson (1995) and Xie (1989). In this article we propose a method based on cubic splines. The accuracy of the method is better, namely O( Δ 5). The computation time is O( n 2) and hence for the same accuracy much faster and furthermore, the method returns a twice continuously differentiable function.</description><subject>Actuaries</subject><subject>Algorithms</subject><subject>Compound distributions</subject><subject>Distribution</subject><subject>Life insurance</subject><subject>Mathematical models</subject><subject>Recursions</subject><subject>Risk</subject><subject>Studies</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUMtKHEEULSSCE5NPCAwukrjoWNX1XgUZogYEF-r6Ul19OymZfqSqW_DvveOICzcpuA9unXM4HMa-CP5DcGHObqnZyhhnv3t7yunVlTpgK-GsrLTX_gNbvUGO2MdSHggjvLEr9m0z9tMyp-HPOtI2LkO7blOZc2roOg5l3YUyY_7EDruwLfj5dR6z-4tfd5ur6vrm8vfm_LqK2vC5UiLWygXZSHTaq0aSQaG8041qg6tD6Dgdg7KNaI2WPArBQ9fZRnXoXbDymH3d6055_LdgmaFPJeJ2GwYclwLSaeOt4QQ8eQd8GJc8kDeouRNGO2cIpPegmMdSMnYw5dSH_ASCwy47eMkOdsGAt_CSHSjiXe15GSeMbyRETENZ-gCPIEPNqT1RCU9UGdJupZp2fxKkgr9zT1I_91JIqT0mzFBiwiFimzLGGdox_cfMM0bQjW0</recordid><startdate>19970601</startdate><enddate>19970601</enddate><creator>den Iseger, P.W.</creator><creator>Smith, M.A.J.</creator><creator>Dekker, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>19970601</creationdate><title>Computing compound distributions faster</title><author>den Iseger, P.W. ; Smith, M.A.J. ; Dekker, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-41c248a3b3e8594b310114985b4da82aaf04b3a47b1d6530c110aff7b4fe98a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Actuaries</topic><topic>Algorithms</topic><topic>Compound distributions</topic><topic>Distribution</topic><topic>Life insurance</topic><topic>Mathematical models</topic><topic>Recursions</topic><topic>Risk</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>den Iseger, P.W.</creatorcontrib><creatorcontrib>Smith, M.A.J.</creatorcontrib><creatorcontrib>Dekker, R.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>den Iseger, P.W.</au><au>Smith, M.A.J.</au><au>Dekker, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing compound distributions faster</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>1997-06-01</date><risdate>1997</risdate><volume>20</volume><issue>1</issue><spage>23</spage><epage>34</epage><pages>23-34</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>The use of Panjer's algorithm has meanwhile become a widespread standard technique for actuaries (Kuon et al., 1955). Panjer's recursion formula is used for the evaluation of compound distributions and can be applied to life and general insurance problems. The discrete version of Panjer's recursion formula is often applied to continuous distributions by discretizing the underlying distribution at n equidistant points, covering a large enough interval, say [0, nΔ]. Panjer's recursion returns a discrete function as an approximation of the compound distribution. It is claimed that this procedure is fast, ( O( n 2)), accurate, ( O( Δ 2)) and easy to understand, cf. Bühlmann (1984), Dickson (1995) and Xie (1989). In this article we propose a method based on cubic splines. The accuracy of the method is better, namely O( Δ 5). The computation time is O( n 2) and hence for the same accuracy much faster and furthermore, the method returns a twice continuously differentiable function.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-6687(97)00002-4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 1997-06, Vol.20 (1), p.23-34
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_38569760
source RePEc; Elsevier ScienceDirect Journals Complete
subjects Actuaries
Algorithms
Compound distributions
Distribution
Life insurance
Mathematical models
Recursions
Risk
Studies
title Computing compound distributions faster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20compound%20distributions%20faster&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=den%20Iseger,%20P.W.&rft.date=1997-06-01&rft.volume=20&rft.issue=1&rft.spage=23&rft.epage=34&rft.pages=23-34&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/S0167-6687(97)00002-4&rft_dat=%3Cproquest_cross%3E13036869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208165886&rft_id=info:pmid/&rft_els_id=S0167668797000024&rfr_iscdi=true