Simple estimation of the mode of a multivariate density
The authors consider an estimate of the mode of a multivariate probability density using a kernel estimate drawn from a random sample. The estimate is defined by maximizing the kernel estimate over the set of sample values. The authors show that this estimate is strongly consistent and give an almos...
Gespeichert in:
Veröffentlicht in: | Canadian journal of statistics 2003-03, Vol.31 (1), p.23-34 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Canadian journal of statistics |
container_volume | 31 |
creator | Abraham, Christophe Biau, Gérard Cadre, Benoît |
description | The authors consider an estimate of the mode of a multivariate probability density using a kernel estimate drawn from a random sample. The estimate is defined by maximizing the kernel estimate over the set of sample values. The authors show that this estimate is strongly consistent and give an almost sure rate of convergence. This rate depends on the sharpness of the density near the true mode, which is measured by a peak index. /// Les auteurs proposent un estimateur du mode d'une densité de probabilité multivariée construit à partir d'un estimateur à noyau basé sur un échantillon aléatoire. Cet estimateur est défini en maximisant l'estimateur à noyau sur les valeurs de l'échantillon. Les auteurs montrent que l'estimateur est fortement convergent et donnent une vitesse de convergence presque sûre. Cette vitesse dépend de la forme de la densité au voisinage du vrai mode, mesurée par un indice de pic. |
doi_str_mv | 10.2307/3315901 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38500739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3315901</jstor_id><sourcerecordid>3315901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3793-c007512751a007d8f43a3b5ae23273ac72df3bda4eccf1021028519049c19f673</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhoMoWKv4Ah72pCCsJplNszlK0Wpb9FCl3kKazWLqbrcmqdq3N2VLPYnDDDMwHz_zD0KnBF9RwPwagDCByR7qEI7zVGTsdR91MBCRMk6zQ3Tk_RxjYITQDuITWy8rkxgfbK2CbRZJUybhzSR1U5jNrJJ6VQX7qZxVwSSFWXgb1sfooFSVNyfb3kUvd7fP_ft0_DR46N-MUw1cQKox5ozQWCpORV5moGDGlKFAOSjNaVHCrFCZ0bokmMbMGRE4E5qIssehi85b3aVrPlbxSllbr01VqYVpVl5CzqIwiP9B2otBWQQvWlC7xntnSrl00bpbS4Ll5oNy-8FIXrbkl63M-i9M9ocTChE-a-G5D43bwb9aabu2Ppjv3Vq5dxldcianjwM5omTIRgMup_ADZ6iFgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32666625</pqid></control><display><type>article</type><title>Simple estimation of the mode of a multivariate density</title><source>JSTOR Mathematics & Statistics</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Abraham, Christophe ; Biau, Gérard ; Cadre, Benoît</creator><creatorcontrib>Abraham, Christophe ; Biau, Gérard ; Cadre, Benoît</creatorcontrib><description>The authors consider an estimate of the mode of a multivariate probability density using a kernel estimate drawn from a random sample. The estimate is defined by maximizing the kernel estimate over the set of sample values. The authors show that this estimate is strongly consistent and give an almost sure rate of convergence. This rate depends on the sharpness of the density near the true mode, which is measured by a peak index. /// Les auteurs proposent un estimateur du mode d'une densité de probabilité multivariée construit à partir d'un estimateur à noyau basé sur un échantillon aléatoire. Cet estimateur est défini en maximisant l'estimateur à noyau sur les valeurs de l'échantillon. Les auteurs montrent que l'estimateur est fortement convergent et donnent une vitesse de convergence presque sûre. Cette vitesse dépend de la forme de la densité au voisinage du vrai mode, mesurée par un indice de pic.</description><identifier>ISSN: 0319-5724</identifier><identifier>EISSN: 1708-945X</identifier><identifier>DOI: 10.2307/3315901</identifier><language>eng</language><publisher>Hoboken: Wiley-Blackwell</publisher><subject>Cluster analysis ; Consistent estimators ; Convergence ; Density ; Density estimation ; Estimation ; Kernel estimate ; Logical proofs ; Mathematical methods ; Mode ; Model testing ; multivariate probability density ; Nomographs ; Probabilities ; Probability ; rate of convergence ; Real numbers ; Statistical methods ; Statistical mode ; Statistics</subject><ispartof>Canadian journal of statistics, 2003-03, Vol.31 (1), p.23-34</ispartof><rights>Copyright 2003 Statistical Society of Canada/Société statistique du Canada</rights><rights>Copyright © 2003 Statistical Society of Canada</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3793-c007512751a007d8f43a3b5ae23273ac72df3bda4eccf1021028519049c19f673</citedby><cites>FETCH-LOGICAL-c3793-c007512751a007d8f43a3b5ae23273ac72df3bda4eccf1021028519049c19f673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3315901$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3315901$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Abraham, Christophe</creatorcontrib><creatorcontrib>Biau, Gérard</creatorcontrib><creatorcontrib>Cadre, Benoît</creatorcontrib><title>Simple estimation of the mode of a multivariate density</title><title>Canadian journal of statistics</title><addtitle>Can J Statistics</addtitle><description>The authors consider an estimate of the mode of a multivariate probability density using a kernel estimate drawn from a random sample. The estimate is defined by maximizing the kernel estimate over the set of sample values. The authors show that this estimate is strongly consistent and give an almost sure rate of convergence. This rate depends on the sharpness of the density near the true mode, which is measured by a peak index. /// Les auteurs proposent un estimateur du mode d'une densité de probabilité multivariée construit à partir d'un estimateur à noyau basé sur un échantillon aléatoire. Cet estimateur est défini en maximisant l'estimateur à noyau sur les valeurs de l'échantillon. Les auteurs montrent que l'estimateur est fortement convergent et donnent une vitesse de convergence presque sûre. Cette vitesse dépend de la forme de la densité au voisinage du vrai mode, mesurée par un indice de pic.</description><subject>Cluster analysis</subject><subject>Consistent estimators</subject><subject>Convergence</subject><subject>Density</subject><subject>Density estimation</subject><subject>Estimation</subject><subject>Kernel estimate</subject><subject>Logical proofs</subject><subject>Mathematical methods</subject><subject>Mode</subject><subject>Model testing</subject><subject>multivariate probability density</subject><subject>Nomographs</subject><subject>Probabilities</subject><subject>Probability</subject><subject>rate of convergence</subject><subject>Real numbers</subject><subject>Statistical methods</subject><subject>Statistical mode</subject><subject>Statistics</subject><issn>0319-5724</issn><issn>1708-945X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEQhoMoWKv4Ah72pCCsJplNszlK0Wpb9FCl3kKazWLqbrcmqdq3N2VLPYnDDDMwHz_zD0KnBF9RwPwagDCByR7qEI7zVGTsdR91MBCRMk6zQ3Tk_RxjYITQDuITWy8rkxgfbK2CbRZJUybhzSR1U5jNrJJ6VQX7qZxVwSSFWXgb1sfooFSVNyfb3kUvd7fP_ft0_DR46N-MUw1cQKox5ozQWCpORV5moGDGlKFAOSjNaVHCrFCZ0bokmMbMGRE4E5qIssehi85b3aVrPlbxSllbr01VqYVpVl5CzqIwiP9B2otBWQQvWlC7xntnSrl00bpbS4Ll5oNy-8FIXrbkl63M-i9M9ocTChE-a-G5D43bwb9aabu2Ppjv3Vq5dxldcianjwM5omTIRgMup_ADZ6iFgw</recordid><startdate>200303</startdate><enddate>200303</enddate><creator>Abraham, Christophe</creator><creator>Biau, Gérard</creator><creator>Cadre, Benoît</creator><general>Wiley-Blackwell</general><general>Statistical Society of Canada</general><general>Wiley‐Blackwell</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200303</creationdate><title>Simple estimation of the mode of a multivariate density</title><author>Abraham, Christophe ; Biau, Gérard ; Cadre, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3793-c007512751a007d8f43a3b5ae23273ac72df3bda4eccf1021028519049c19f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Cluster analysis</topic><topic>Consistent estimators</topic><topic>Convergence</topic><topic>Density</topic><topic>Density estimation</topic><topic>Estimation</topic><topic>Kernel estimate</topic><topic>Logical proofs</topic><topic>Mathematical methods</topic><topic>Mode</topic><topic>Model testing</topic><topic>multivariate probability density</topic><topic>Nomographs</topic><topic>Probabilities</topic><topic>Probability</topic><topic>rate of convergence</topic><topic>Real numbers</topic><topic>Statistical methods</topic><topic>Statistical mode</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abraham, Christophe</creatorcontrib><creatorcontrib>Biau, Gérard</creatorcontrib><creatorcontrib>Cadre, Benoît</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Canadian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham, Christophe</au><au>Biau, Gérard</au><au>Cadre, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple estimation of the mode of a multivariate density</atitle><jtitle>Canadian journal of statistics</jtitle><addtitle>Can J Statistics</addtitle><date>2003-03</date><risdate>2003</risdate><volume>31</volume><issue>1</issue><spage>23</spage><epage>34</epage><pages>23-34</pages><issn>0319-5724</issn><eissn>1708-945X</eissn><abstract>The authors consider an estimate of the mode of a multivariate probability density using a kernel estimate drawn from a random sample. The estimate is defined by maximizing the kernel estimate over the set of sample values. The authors show that this estimate is strongly consistent and give an almost sure rate of convergence. This rate depends on the sharpness of the density near the true mode, which is measured by a peak index. /// Les auteurs proposent un estimateur du mode d'une densité de probabilité multivariée construit à partir d'un estimateur à noyau basé sur un échantillon aléatoire. Cet estimateur est défini en maximisant l'estimateur à noyau sur les valeurs de l'échantillon. Les auteurs montrent que l'estimateur est fortement convergent et donnent une vitesse de convergence presque sûre. Cette vitesse dépend de la forme de la densité au voisinage du vrai mode, mesurée par un indice de pic.</abstract><cop>Hoboken</cop><pub>Wiley-Blackwell</pub><doi>10.2307/3315901</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0319-5724 |
ispartof | Canadian journal of statistics, 2003-03, Vol.31 (1), p.23-34 |
issn | 0319-5724 1708-945X |
language | eng |
recordid | cdi_proquest_miscellaneous_38500739 |
source | JSTOR Mathematics & Statistics; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing |
subjects | Cluster analysis Consistent estimators Convergence Density Density estimation Estimation Kernel estimate Logical proofs Mathematical methods Mode Model testing multivariate probability density Nomographs Probabilities Probability rate of convergence Real numbers Statistical methods Statistical mode Statistics |
title | Simple estimation of the mode of a multivariate density |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20estimation%20of%20the%20mode%20of%20a%20multivariate%20density&rft.jtitle=Canadian%20journal%20of%20statistics&rft.au=Abraham,%20Christophe&rft.date=2003-03&rft.volume=31&rft.issue=1&rft.spage=23&rft.epage=34&rft.pages=23-34&rft.issn=0319-5724&rft.eissn=1708-945X&rft_id=info:doi/10.2307/3315901&rft_dat=%3Cjstor_proqu%3E3315901%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32666625&rft_id=info:pmid/&rft_jstor_id=3315901&rfr_iscdi=true |