Simple estimation of the mode of a multivariate density

The authors consider an estimate of the mode of a multivariate probability density using a kernel estimate drawn from a random sample. The estimate is defined by maximizing the kernel estimate over the set of sample values. The authors show that this estimate is strongly consistent and give an almos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of statistics 2003-03, Vol.31 (1), p.23-34
Hauptverfasser: Abraham, Christophe, Biau, Gérard, Cadre, Benoît
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 23
container_title Canadian journal of statistics
container_volume 31
creator Abraham, Christophe
Biau, Gérard
Cadre, Benoît
description The authors consider an estimate of the mode of a multivariate probability density using a kernel estimate drawn from a random sample. The estimate is defined by maximizing the kernel estimate over the set of sample values. The authors show that this estimate is strongly consistent and give an almost sure rate of convergence. This rate depends on the sharpness of the density near the true mode, which is measured by a peak index. /// Les auteurs proposent un estimateur du mode d'une densité de probabilité multivariée construit à partir d'un estimateur à noyau basé sur un échantillon aléatoire. Cet estimateur est défini en maximisant l'estimateur à noyau sur les valeurs de l'échantillon. Les auteurs montrent que l'estimateur est fortement convergent et donnent une vitesse de convergence presque sûre. Cette vitesse dépend de la forme de la densité au voisinage du vrai mode, mesurée par un indice de pic.
doi_str_mv 10.2307/3315901
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38500739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3315901</jstor_id><sourcerecordid>3315901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3793-c007512751a007d8f43a3b5ae23273ac72df3bda4eccf1021028519049c19f673</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhoMoWKv4Ah72pCCsJplNszlK0Wpb9FCl3kKazWLqbrcmqdq3N2VLPYnDDDMwHz_zD0KnBF9RwPwagDCByR7qEI7zVGTsdR91MBCRMk6zQ3Tk_RxjYITQDuITWy8rkxgfbK2CbRZJUybhzSR1U5jNrJJ6VQX7qZxVwSSFWXgb1sfooFSVNyfb3kUvd7fP_ft0_DR46N-MUw1cQKox5ozQWCpORV5moGDGlKFAOSjNaVHCrFCZ0bokmMbMGRE4E5qIssehi85b3aVrPlbxSllbr01VqYVpVl5CzqIwiP9B2otBWQQvWlC7xntnSrl00bpbS4Ll5oNy-8FIXrbkl63M-i9M9ocTChE-a-G5D43bwb9aabu2Ppjv3Vq5dxldcianjwM5omTIRgMup_ADZ6iFgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32666625</pqid></control><display><type>article</type><title>Simple estimation of the mode of a multivariate density</title><source>JSTOR Mathematics &amp; Statistics</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Abraham, Christophe ; Biau, Gérard ; Cadre, Benoît</creator><creatorcontrib>Abraham, Christophe ; Biau, Gérard ; Cadre, Benoît</creatorcontrib><description>The authors consider an estimate of the mode of a multivariate probability density using a kernel estimate drawn from a random sample. The estimate is defined by maximizing the kernel estimate over the set of sample values. The authors show that this estimate is strongly consistent and give an almost sure rate of convergence. This rate depends on the sharpness of the density near the true mode, which is measured by a peak index. /// Les auteurs proposent un estimateur du mode d'une densité de probabilité multivariée construit à partir d'un estimateur à noyau basé sur un échantillon aléatoire. Cet estimateur est défini en maximisant l'estimateur à noyau sur les valeurs de l'échantillon. Les auteurs montrent que l'estimateur est fortement convergent et donnent une vitesse de convergence presque sûre. Cette vitesse dépend de la forme de la densité au voisinage du vrai mode, mesurée par un indice de pic.</description><identifier>ISSN: 0319-5724</identifier><identifier>EISSN: 1708-945X</identifier><identifier>DOI: 10.2307/3315901</identifier><language>eng</language><publisher>Hoboken: Wiley-Blackwell</publisher><subject>Cluster analysis ; Consistent estimators ; Convergence ; Density ; Density estimation ; Estimation ; Kernel estimate ; Logical proofs ; Mathematical methods ; Mode ; Model testing ; multivariate probability density ; Nomographs ; Probabilities ; Probability ; rate of convergence ; Real numbers ; Statistical methods ; Statistical mode ; Statistics</subject><ispartof>Canadian journal of statistics, 2003-03, Vol.31 (1), p.23-34</ispartof><rights>Copyright 2003 Statistical Society of Canada/Société statistique du Canada</rights><rights>Copyright © 2003 Statistical Society of Canada</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3793-c007512751a007d8f43a3b5ae23273ac72df3bda4eccf1021028519049c19f673</citedby><cites>FETCH-LOGICAL-c3793-c007512751a007d8f43a3b5ae23273ac72df3bda4eccf1021028519049c19f673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3315901$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3315901$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Abraham, Christophe</creatorcontrib><creatorcontrib>Biau, Gérard</creatorcontrib><creatorcontrib>Cadre, Benoît</creatorcontrib><title>Simple estimation of the mode of a multivariate density</title><title>Canadian journal of statistics</title><addtitle>Can J Statistics</addtitle><description>The authors consider an estimate of the mode of a multivariate probability density using a kernel estimate drawn from a random sample. The estimate is defined by maximizing the kernel estimate over the set of sample values. The authors show that this estimate is strongly consistent and give an almost sure rate of convergence. This rate depends on the sharpness of the density near the true mode, which is measured by a peak index. /// Les auteurs proposent un estimateur du mode d'une densité de probabilité multivariée construit à partir d'un estimateur à noyau basé sur un échantillon aléatoire. Cet estimateur est défini en maximisant l'estimateur à noyau sur les valeurs de l'échantillon. Les auteurs montrent que l'estimateur est fortement convergent et donnent une vitesse de convergence presque sûre. Cette vitesse dépend de la forme de la densité au voisinage du vrai mode, mesurée par un indice de pic.</description><subject>Cluster analysis</subject><subject>Consistent estimators</subject><subject>Convergence</subject><subject>Density</subject><subject>Density estimation</subject><subject>Estimation</subject><subject>Kernel estimate</subject><subject>Logical proofs</subject><subject>Mathematical methods</subject><subject>Mode</subject><subject>Model testing</subject><subject>multivariate probability density</subject><subject>Nomographs</subject><subject>Probabilities</subject><subject>Probability</subject><subject>rate of convergence</subject><subject>Real numbers</subject><subject>Statistical methods</subject><subject>Statistical mode</subject><subject>Statistics</subject><issn>0319-5724</issn><issn>1708-945X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEQhoMoWKv4Ah72pCCsJplNszlK0Wpb9FCl3kKazWLqbrcmqdq3N2VLPYnDDDMwHz_zD0KnBF9RwPwagDCByR7qEI7zVGTsdR91MBCRMk6zQ3Tk_RxjYITQDuITWy8rkxgfbK2CbRZJUybhzSR1U5jNrJJ6VQX7qZxVwSSFWXgb1sfooFSVNyfb3kUvd7fP_ft0_DR46N-MUw1cQKox5ozQWCpORV5moGDGlKFAOSjNaVHCrFCZ0bokmMbMGRE4E5qIssehi85b3aVrPlbxSllbr01VqYVpVl5CzqIwiP9B2otBWQQvWlC7xntnSrl00bpbS4Ll5oNy-8FIXrbkl63M-i9M9ocTChE-a-G5D43bwb9aabu2Ppjv3Vq5dxldcianjwM5omTIRgMup_ADZ6iFgw</recordid><startdate>200303</startdate><enddate>200303</enddate><creator>Abraham, Christophe</creator><creator>Biau, Gérard</creator><creator>Cadre, Benoît</creator><general>Wiley-Blackwell</general><general>Statistical Society of Canada</general><general>Wiley‐Blackwell</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200303</creationdate><title>Simple estimation of the mode of a multivariate density</title><author>Abraham, Christophe ; Biau, Gérard ; Cadre, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3793-c007512751a007d8f43a3b5ae23273ac72df3bda4eccf1021028519049c19f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Cluster analysis</topic><topic>Consistent estimators</topic><topic>Convergence</topic><topic>Density</topic><topic>Density estimation</topic><topic>Estimation</topic><topic>Kernel estimate</topic><topic>Logical proofs</topic><topic>Mathematical methods</topic><topic>Mode</topic><topic>Model testing</topic><topic>multivariate probability density</topic><topic>Nomographs</topic><topic>Probabilities</topic><topic>Probability</topic><topic>rate of convergence</topic><topic>Real numbers</topic><topic>Statistical methods</topic><topic>Statistical mode</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abraham, Christophe</creatorcontrib><creatorcontrib>Biau, Gérard</creatorcontrib><creatorcontrib>Cadre, Benoît</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Canadian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abraham, Christophe</au><au>Biau, Gérard</au><au>Cadre, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple estimation of the mode of a multivariate density</atitle><jtitle>Canadian journal of statistics</jtitle><addtitle>Can J Statistics</addtitle><date>2003-03</date><risdate>2003</risdate><volume>31</volume><issue>1</issue><spage>23</spage><epage>34</epage><pages>23-34</pages><issn>0319-5724</issn><eissn>1708-945X</eissn><abstract>The authors consider an estimate of the mode of a multivariate probability density using a kernel estimate drawn from a random sample. The estimate is defined by maximizing the kernel estimate over the set of sample values. The authors show that this estimate is strongly consistent and give an almost sure rate of convergence. This rate depends on the sharpness of the density near the true mode, which is measured by a peak index. /// Les auteurs proposent un estimateur du mode d'une densité de probabilité multivariée construit à partir d'un estimateur à noyau basé sur un échantillon aléatoire. Cet estimateur est défini en maximisant l'estimateur à noyau sur les valeurs de l'échantillon. Les auteurs montrent que l'estimateur est fortement convergent et donnent une vitesse de convergence presque sûre. Cette vitesse dépend de la forme de la densité au voisinage du vrai mode, mesurée par un indice de pic.</abstract><cop>Hoboken</cop><pub>Wiley-Blackwell</pub><doi>10.2307/3315901</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0319-5724
ispartof Canadian journal of statistics, 2003-03, Vol.31 (1), p.23-34
issn 0319-5724
1708-945X
language eng
recordid cdi_proquest_miscellaneous_38500739
source JSTOR Mathematics & Statistics; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing
subjects Cluster analysis
Consistent estimators
Convergence
Density
Density estimation
Estimation
Kernel estimate
Logical proofs
Mathematical methods
Mode
Model testing
multivariate probability density
Nomographs
Probabilities
Probability
rate of convergence
Real numbers
Statistical methods
Statistical mode
Statistics
title Simple estimation of the mode of a multivariate density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20estimation%20of%20the%20mode%20of%20a%20multivariate%20density&rft.jtitle=Canadian%20journal%20of%20statistics&rft.au=Abraham,%20Christophe&rft.date=2003-03&rft.volume=31&rft.issue=1&rft.spage=23&rft.epage=34&rft.pages=23-34&rft.issn=0319-5724&rft.eissn=1708-945X&rft_id=info:doi/10.2307/3315901&rft_dat=%3Cjstor_proqu%3E3315901%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32666625&rft_id=info:pmid/&rft_jstor_id=3315901&rfr_iscdi=true