Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities
We develop a flexible class of Metropolis-Hastings algorithms for drawing inferences about population histories and mutation rates from deoxyribonucleic acid (DNA) sequence data. Match probabilities for use in forensic identification are also obtained, which is particularly useful for mitochondrial...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 2003-06, Vol.166 (2), p.155-188 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 2 |
container_start_page | 155 |
container_title | Journal of the Royal Statistical Society. Series A, Statistics in society |
container_volume | 166 |
creator | Wilson, Ian J. Weale, Michael E. Balding, David J. |
description | We develop a flexible class of Metropolis-Hastings algorithms for drawing inferences about population histories and mutation rates from deoxyribonucleic acid (DNA) sequence data. Match probabilities for use in forensic identification are also obtained, which is particularly useful for mitochondrial DNA profiles. Our data augmentation approach, in which the ancestral DNA data are inferred at each node of the genealogical tree, simplifies likelihood calculations and permits a wide class of mutation models to be employed, so that many different types of DNA sequence data can be analysed within our framework. Moreover, simpler likelihood calculations imply greater freedom for generating tree proposals, so that algorithms with good mixing properties can be implemented. We incorporate the effects of demography by means of simple mechanisms for changes in population size and structure, and we estimate the corresponding demographic parameters, but we do not here allow for the effects of either recombination or selection. We illustrate our methods by application to four human DNA data sets, consisting of DNA sequences, short tandem repeat loci, single-nucleotide polymorphism sites and insertion sites. Two of the data sets are drawn from the male-specific Y-chromosome, one from maternally inherited mitochondrial DNA and one from the β-globin locus on chromosome 11. |
doi_str_mv | 10.1111/1467-985X.00264 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38457230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3559656</jstor_id><sourcerecordid>3559656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6104-973abc9092d9c3738cd63a5d6f61fb1735ec46f235ccd82c26c5689456216c363</originalsourceid><addsrcrecordid>eNqFUk1v1DAQtRBILIUzFw65wIm0_nbMbdVCW7UUiYLgZjmOzXpJ4mBnC_vvsUm1HGtpPNbMezPjZwPwEsFjlNcJolzUsmHfjyHEnD4Cq0PkMVhByWmNpGyegmcpbWFZQqzAj8vR2WhHY1PlYhiqs5t11elZv6umMO16PfswVhuf5hC9TW8rexf6XQnquK-mGDIxZa4eu8qFXCh5Uw16NpuSbHXrez9n4nPwxOk-2Rf3_gh8_fD-y-lFff3p_PJ0fV0bjiCtpSC6NRJK3ElDBGlMx4lmHXccuRYJwqyh3GHCjOkabDA3jDeSMo4RN4STI_BmqZu7_9rZNKvBJ2P7Xo827JIiDWUCE_ggECNEEWQiA08WoIkhpWidmqIf8u0Vgqoor4rOquis_imfGVcLI9rJmgO87fU2xJS0ulNEI87zvs-GISTZ-XLMNpUkYwo1jdrMQ672-n5QnYzuXdSj8en_EFTk1gxnHF1wv31v9w8NqT7f3q6XYV8ttG154gONMCY5K3rWSzr_APvnkNbxp-KCCKa-3ZwryD5eCCTO1BX5C_0WxOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21141057</pqid></control><display><type>article</type><title>Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities</title><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics & Statistics</source><source>EBSCOhost Business Source Complete</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Wilson, Ian J. ; Weale, Michael E. ; Balding, David J.</creator><creatorcontrib>Wilson, Ian J. ; Weale, Michael E. ; Balding, David J.</creatorcontrib><description>We develop a flexible class of Metropolis-Hastings algorithms for drawing inferences about population histories and mutation rates from deoxyribonucleic acid (DNA) sequence data. Match probabilities for use in forensic identification are also obtained, which is particularly useful for mitochondrial DNA profiles. Our data augmentation approach, in which the ancestral DNA data are inferred at each node of the genealogical tree, simplifies likelihood calculations and permits a wide class of mutation models to be employed, so that many different types of DNA sequence data can be analysed within our framework. Moreover, simpler likelihood calculations imply greater freedom for generating tree proposals, so that algorithms with good mixing properties can be implemented. We incorporate the effects of demography by means of simple mechanisms for changes in population size and structure, and we estimate the corresponding demographic parameters, but we do not here allow for the effects of either recombination or selection. We illustrate our methods by application to four human DNA data sets, consisting of DNA sequences, short tandem repeat loci, single-nucleotide polymorphism sites and insertion sites. Two of the data sets are drawn from the male-specific Y-chromosome, one from maternally inherited mitochondrial DNA and one from the β-globin locus on chromosome 11.</description><identifier>ISSN: 0964-1998</identifier><identifier>EISSN: 1467-985X</identifier><identifier>DOI: 10.1111/1467-985X.00264</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing</publisher><subject>Applications ; Datasets ; DNA ; Evolutionary genetics ; Exact sciences and technology ; Forensic identification ; Genetic loci ; Genetic mutation ; Haplotypes ; History ; Human genetics ; Human history ; Insurance, economics, finance ; Markov chain Monte Carlo methods ; Markovian processes ; Mathematics ; Mitochondrial DNA ; Monte Carlo simulation ; Multivariate analysis ; Parametric inference ; Population ; Population estimates ; Population genetics ; Population growth ; Population size ; Probability and statistics ; Sciences and techniques of general use ; Sequential methods ; Statistical genetics ; Statistical methods ; Statistics ; Stochastic processes</subject><ispartof>Journal of the Royal Statistical Society. Series A, Statistics in society, 2003-06, Vol.166 (2), p.155-188</ispartof><rights>Copyright 2003 The Royal Statistical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6104-973abc9092d9c3738cd63a5d6f61fb1735ec46f235ccd82c26c5689456216c363</citedby><cites>FETCH-LOGICAL-c6104-973abc9092d9c3738cd63a5d6f61fb1735ec46f235ccd82c26c5689456216c363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3559656$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3559656$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,3993,27903,27904,45553,45554,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14798552$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssa/v_3a166_3ay_3a2003_3ai_3a2_3ap_3a155-188.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Ian J.</creatorcontrib><creatorcontrib>Weale, Michael E.</creatorcontrib><creatorcontrib>Balding, David J.</creatorcontrib><title>Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities</title><title>Journal of the Royal Statistical Society. Series A, Statistics in society</title><description>We develop a flexible class of Metropolis-Hastings algorithms for drawing inferences about population histories and mutation rates from deoxyribonucleic acid (DNA) sequence data. Match probabilities for use in forensic identification are also obtained, which is particularly useful for mitochondrial DNA profiles. Our data augmentation approach, in which the ancestral DNA data are inferred at each node of the genealogical tree, simplifies likelihood calculations and permits a wide class of mutation models to be employed, so that many different types of DNA sequence data can be analysed within our framework. Moreover, simpler likelihood calculations imply greater freedom for generating tree proposals, so that algorithms with good mixing properties can be implemented. We incorporate the effects of demography by means of simple mechanisms for changes in population size and structure, and we estimate the corresponding demographic parameters, but we do not here allow for the effects of either recombination or selection. We illustrate our methods by application to four human DNA data sets, consisting of DNA sequences, short tandem repeat loci, single-nucleotide polymorphism sites and insertion sites. Two of the data sets are drawn from the male-specific Y-chromosome, one from maternally inherited mitochondrial DNA and one from the β-globin locus on chromosome 11.</description><subject>Applications</subject><subject>Datasets</subject><subject>DNA</subject><subject>Evolutionary genetics</subject><subject>Exact sciences and technology</subject><subject>Forensic identification</subject><subject>Genetic loci</subject><subject>Genetic mutation</subject><subject>Haplotypes</subject><subject>History</subject><subject>Human genetics</subject><subject>Human history</subject><subject>Insurance, economics, finance</subject><subject>Markov chain Monte Carlo methods</subject><subject>Markovian processes</subject><subject>Mathematics</subject><subject>Mitochondrial DNA</subject><subject>Monte Carlo simulation</subject><subject>Multivariate analysis</subject><subject>Parametric inference</subject><subject>Population</subject><subject>Population estimates</subject><subject>Population genetics</subject><subject>Population growth</subject><subject>Population size</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Sequential methods</subject><subject>Statistical genetics</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Stochastic processes</subject><issn>0964-1998</issn><issn>1467-985X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUk1v1DAQtRBILIUzFw65wIm0_nbMbdVCW7UUiYLgZjmOzXpJ4mBnC_vvsUm1HGtpPNbMezPjZwPwEsFjlNcJolzUsmHfjyHEnD4Cq0PkMVhByWmNpGyegmcpbWFZQqzAj8vR2WhHY1PlYhiqs5t11elZv6umMO16PfswVhuf5hC9TW8rexf6XQnquK-mGDIxZa4eu8qFXCh5Uw16NpuSbHXrez9n4nPwxOk-2Rf3_gh8_fD-y-lFff3p_PJ0fV0bjiCtpSC6NRJK3ElDBGlMx4lmHXccuRYJwqyh3GHCjOkabDA3jDeSMo4RN4STI_BmqZu7_9rZNKvBJ2P7Xo827JIiDWUCE_ggECNEEWQiA08WoIkhpWidmqIf8u0Vgqoor4rOquis_imfGVcLI9rJmgO87fU2xJS0ulNEI87zvs-GISTZ-XLMNpUkYwo1jdrMQ672-n5QnYzuXdSj8en_EFTk1gxnHF1wv31v9w8NqT7f3q6XYV8ttG154gONMCY5K3rWSzr_APvnkNbxp-KCCKa-3ZwryD5eCCTO1BX5C_0WxOo</recordid><startdate>200306</startdate><enddate>200306</enddate><creator>Wilson, Ian J.</creator><creator>Weale, Michael E.</creator><creator>Balding, David J.</creator><general>Blackwell Publishing</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>200306</creationdate><title>Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities</title><author>Wilson, Ian J. ; Weale, Michael E. ; Balding, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6104-973abc9092d9c3738cd63a5d6f61fb1735ec46f235ccd82c26c5689456216c363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applications</topic><topic>Datasets</topic><topic>DNA</topic><topic>Evolutionary genetics</topic><topic>Exact sciences and technology</topic><topic>Forensic identification</topic><topic>Genetic loci</topic><topic>Genetic mutation</topic><topic>Haplotypes</topic><topic>History</topic><topic>Human genetics</topic><topic>Human history</topic><topic>Insurance, economics, finance</topic><topic>Markov chain Monte Carlo methods</topic><topic>Markovian processes</topic><topic>Mathematics</topic><topic>Mitochondrial DNA</topic><topic>Monte Carlo simulation</topic><topic>Multivariate analysis</topic><topic>Parametric inference</topic><topic>Population</topic><topic>Population estimates</topic><topic>Population genetics</topic><topic>Population growth</topic><topic>Population size</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Sequential methods</topic><topic>Statistical genetics</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Ian J.</creatorcontrib><creatorcontrib>Weale, Michael E.</creatorcontrib><creatorcontrib>Balding, David J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Ian J.</au><au>Weale, Michael E.</au><au>Balding, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities</atitle><jtitle>Journal of the Royal Statistical Society. Series A, Statistics in society</jtitle><date>2003-06</date><risdate>2003</risdate><volume>166</volume><issue>2</issue><spage>155</spage><epage>188</epage><pages>155-188</pages><issn>0964-1998</issn><eissn>1467-985X</eissn><abstract>We develop a flexible class of Metropolis-Hastings algorithms for drawing inferences about population histories and mutation rates from deoxyribonucleic acid (DNA) sequence data. Match probabilities for use in forensic identification are also obtained, which is particularly useful for mitochondrial DNA profiles. Our data augmentation approach, in which the ancestral DNA data are inferred at each node of the genealogical tree, simplifies likelihood calculations and permits a wide class of mutation models to be employed, so that many different types of DNA sequence data can be analysed within our framework. Moreover, simpler likelihood calculations imply greater freedom for generating tree proposals, so that algorithms with good mixing properties can be implemented. We incorporate the effects of demography by means of simple mechanisms for changes in population size and structure, and we estimate the corresponding demographic parameters, but we do not here allow for the effects of either recombination or selection. We illustrate our methods by application to four human DNA data sets, consisting of DNA sequences, short tandem repeat loci, single-nucleotide polymorphism sites and insertion sites. Two of the data sets are drawn from the male-specific Y-chromosome, one from maternally inherited mitochondrial DNA and one from the β-globin locus on chromosome 11.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing</pub><doi>10.1111/1467-985X.00264</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1998 |
ispartof | Journal of the Royal Statistical Society. Series A, Statistics in society, 2003-06, Vol.166 (2), p.155-188 |
issn | 0964-1998 1467-985X |
language | eng |
recordid | cdi_proquest_miscellaneous_38457230 |
source | RePEc; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | Applications Datasets DNA Evolutionary genetics Exact sciences and technology Forensic identification Genetic loci Genetic mutation Haplotypes History Human genetics Human history Insurance, economics, finance Markov chain Monte Carlo methods Markovian processes Mathematics Mitochondrial DNA Monte Carlo simulation Multivariate analysis Parametric inference Population Population estimates Population genetics Population growth Population size Probability and statistics Sciences and techniques of general use Sequential methods Statistical genetics Statistical methods Statistics Stochastic processes |
title | Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferences%20from%20DNA%20data:%20population%20histories,%20evolutionary%20processes%20and%20forensic%20match%20probabilities&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20A,%20Statistics%20in%20society&rft.au=Wilson,%20Ian%20J.&rft.date=2003-06&rft.volume=166&rft.issue=2&rft.spage=155&rft.epage=188&rft.pages=155-188&rft.issn=0964-1998&rft.eissn=1467-985X&rft_id=info:doi/10.1111/1467-985X.00264&rft_dat=%3Cjstor_proqu%3E3559656%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21141057&rft_id=info:pmid/&rft_jstor_id=3559656&rfr_iscdi=true |