Additive decompositions for Fisher, Törnqvist and geometric mean indexes

Users of a price or quantity index often want to know how much each item in the index contributes to its overall change. Consequently, statistical agencies generally publish items' contributions to changes in the indexes that they publish. For fixed basket index formulas, calculating contributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of economic and social measurement 2002, Vol.28 (1-2), p.51-61
Hauptverfasser: Reinsdorf, Marshall B., Diewert, W. Erwin, Ehemann, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue 1-2
container_start_page 51
container_title Journal of economic and social measurement
container_volume 28
creator Reinsdorf, Marshall B.
Diewert, W. Erwin
Ehemann, Christian
description Users of a price or quantity index often want to know how much each item in the index contributes to its overall change. Consequently, statistical agencies generally publish items' contributions to changes in the indexes that they publish. For fixed basket index formulas, calculating contributions to index change that add up to the correct total is straightforward, but for Fisher, Törnqvist and geometric mean index formulas -- which statistical agencies are beginning to use -- it is not. We use economic and axiomatic approaches to derive additive decompositions of the change in a Fisher index, and we use an axiomatic approach to derive an additive decomposition of the change in a Törnqvist or geometric mean index.
doi_str_mv 10.3233/JEM-2003-0194
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38431186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3233_JEM-2003-0194</sage_id><sourcerecordid>38431186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-be622e9f417f6a014ad2c3c42ae452795a1a225783c4e971ebace187ec476f303</originalsourceid><addsrcrecordid>eNptkM1KAzEURoMoWKtL98GFCzGav5nMLEtptVJxU9chzdypKZ1Jm0yLvpgv4IuZUhciri7f5fBx70HoktE7wYW4fxo9E06pIJSV8gj1WKEyUpSCH6MeVVKRMs_5KTqLcUkpE5yrHpoMqsp1bge4AuubtY8p-Tbi2gc8dvENwi2efX2GdrNzscOmrfACfANdcBY3YFrs2greIZ6jk9qsIlz8zD56HY9mw0cyfXmYDAdTYgXNOjKHnHMoa8lUnRvKpKm4FVZyAzLjqswMM5xnqkg7KBWDubGQPgErVV4LKvro-tC7Dn6zhdjpxkULq5VpwW-jFoUUjBV5Aq_-gEu_DW26TbMyY7LkkieIHCAbfIwBar0OrjHhQzOq91Z1sqr3VvXeauJvDnw0C_hV-C_8DUHOdyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195149242</pqid></control><display><type>article</type><title>Additive decompositions for Fisher, Törnqvist and geometric mean indexes</title><source>Business Source Complete</source><source>Sociological Abstracts</source><creator>Reinsdorf, Marshall B. ; Diewert, W. Erwin ; Ehemann, Christian</creator><creatorcontrib>Reinsdorf, Marshall B. ; Diewert, W. Erwin ; Ehemann, Christian</creatorcontrib><description>Users of a price or quantity index often want to know how much each item in the index contributes to its overall change. Consequently, statistical agencies generally publish items' contributions to changes in the indexes that they publish. For fixed basket index formulas, calculating contributions to index change that add up to the correct total is straightforward, but for Fisher, Törnqvist and geometric mean index formulas -- which statistical agencies are beginning to use -- it is not. We use economic and axiomatic approaches to derive additive decompositions of the change in a Fisher index, and we use an axiomatic approach to derive an additive decomposition of the change in a Törnqvist or geometric mean index.</description><identifier>ISSN: 0747-9662</identifier><identifier>EISSN: 1875-8932</identifier><identifier>EISSN: 2523-5338</identifier><identifier>DOI: 10.3233/JEM-2003-0194</identifier><identifier>CODEN: JEMEEZ</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Economic statistics ; Economics ; Index numbers ; Methodology ; Price index ; Price indexation ; Price indexes ; Statistical analysis</subject><ispartof>Journal of economic and social measurement, 2002, Vol.28 (1-2), p.51-61</ispartof><rights>IOS Press. All rights reserved</rights><rights>Copyright IOS Press 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-be622e9f417f6a014ad2c3c42ae452795a1a225783c4e971ebace187ec476f303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902,33751</link.rule.ids></links><search><creatorcontrib>Reinsdorf, Marshall B.</creatorcontrib><creatorcontrib>Diewert, W. Erwin</creatorcontrib><creatorcontrib>Ehemann, Christian</creatorcontrib><title>Additive decompositions for Fisher, Törnqvist and geometric mean indexes</title><title>Journal of economic and social measurement</title><description>Users of a price or quantity index often want to know how much each item in the index contributes to its overall change. Consequently, statistical agencies generally publish items' contributions to changes in the indexes that they publish. For fixed basket index formulas, calculating contributions to index change that add up to the correct total is straightforward, but for Fisher, Törnqvist and geometric mean index formulas -- which statistical agencies are beginning to use -- it is not. We use economic and axiomatic approaches to derive additive decompositions of the change in a Fisher index, and we use an axiomatic approach to derive an additive decomposition of the change in a Törnqvist or geometric mean index.</description><subject>Economic statistics</subject><subject>Economics</subject><subject>Index numbers</subject><subject>Methodology</subject><subject>Price index</subject><subject>Price indexation</subject><subject>Price indexes</subject><subject>Statistical analysis</subject><issn>0747-9662</issn><issn>1875-8932</issn><issn>2523-5338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNptkM1KAzEURoMoWKtL98GFCzGav5nMLEtptVJxU9chzdypKZ1Jm0yLvpgv4IuZUhciri7f5fBx70HoktE7wYW4fxo9E06pIJSV8gj1WKEyUpSCH6MeVVKRMs_5KTqLcUkpE5yrHpoMqsp1bge4AuubtY8p-Tbi2gc8dvENwi2efX2GdrNzscOmrfACfANdcBY3YFrs2greIZ6jk9qsIlz8zD56HY9mw0cyfXmYDAdTYgXNOjKHnHMoa8lUnRvKpKm4FVZyAzLjqswMM5xnqkg7KBWDubGQPgErVV4LKvro-tC7Dn6zhdjpxkULq5VpwW-jFoUUjBV5Aq_-gEu_DW26TbMyY7LkkieIHCAbfIwBar0OrjHhQzOq91Z1sqr3VvXeauJvDnw0C_hV-C_8DUHOdyo</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Reinsdorf, Marshall B.</creator><creator>Diewert, W. Erwin</creator><creator>Ehemann, Christian</creator><general>SAGE Publications</general><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope></search><sort><creationdate>2002</creationdate><title>Additive decompositions for Fisher, Törnqvist and geometric mean indexes</title><author>Reinsdorf, Marshall B. ; Diewert, W. Erwin ; Ehemann, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-be622e9f417f6a014ad2c3c42ae452795a1a225783c4e971ebace187ec476f303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Economic statistics</topic><topic>Economics</topic><topic>Index numbers</topic><topic>Methodology</topic><topic>Price index</topic><topic>Price indexation</topic><topic>Price indexes</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinsdorf, Marshall B.</creatorcontrib><creatorcontrib>Diewert, W. Erwin</creatorcontrib><creatorcontrib>Ehemann, Christian</creatorcontrib><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Journal of economic and social measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinsdorf, Marshall B.</au><au>Diewert, W. Erwin</au><au>Ehemann, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive decompositions for Fisher, Törnqvist and geometric mean indexes</atitle><jtitle>Journal of economic and social measurement</jtitle><date>2002</date><risdate>2002</risdate><volume>28</volume><issue>1-2</issue><spage>51</spage><epage>61</epage><pages>51-61</pages><issn>0747-9662</issn><eissn>1875-8932</eissn><eissn>2523-5338</eissn><coden>JEMEEZ</coden><abstract>Users of a price or quantity index often want to know how much each item in the index contributes to its overall change. Consequently, statistical agencies generally publish items' contributions to changes in the indexes that they publish. For fixed basket index formulas, calculating contributions to index change that add up to the correct total is straightforward, but for Fisher, Törnqvist and geometric mean index formulas -- which statistical agencies are beginning to use -- it is not. We use economic and axiomatic approaches to derive additive decompositions of the change in a Fisher index, and we use an axiomatic approach to derive an additive decomposition of the change in a Törnqvist or geometric mean index.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.3233/JEM-2003-0194</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0747-9662
ispartof Journal of economic and social measurement, 2002, Vol.28 (1-2), p.51-61
issn 0747-9662
1875-8932
2523-5338
language eng
recordid cdi_proquest_miscellaneous_38431186
source Business Source Complete; Sociological Abstracts
subjects Economic statistics
Economics
Index numbers
Methodology
Price index
Price indexation
Price indexes
Statistical analysis
title Additive decompositions for Fisher, Törnqvist and geometric mean indexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20decompositions%20for%20Fisher,%20T%C3%B6rnqvist%20and%20geometric%20mean%20indexes&rft.jtitle=Journal%20of%20economic%20and%20social%20measurement&rft.au=Reinsdorf,%20Marshall%20B.&rft.date=2002&rft.volume=28&rft.issue=1-2&rft.spage=51&rft.epage=61&rft.pages=51-61&rft.issn=0747-9662&rft.eissn=1875-8932&rft.coden=JEMEEZ&rft_id=info:doi/10.3233/JEM-2003-0194&rft_dat=%3Cproquest_cross%3E38431186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195149242&rft_id=info:pmid/&rft_sage_id=10.3233_JEM-2003-0194&rfr_iscdi=true