Additive decompositions for Fisher, Törnqvist and geometric mean indexes
Users of a price or quantity index often want to know how much each item in the index contributes to its overall change. Consequently, statistical agencies generally publish items' contributions to changes in the indexes that they publish. For fixed basket index formulas, calculating contributi...
Gespeichert in:
Veröffentlicht in: | Journal of economic and social measurement 2002, Vol.28 (1-2), p.51-61 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | 1-2 |
container_start_page | 51 |
container_title | Journal of economic and social measurement |
container_volume | 28 |
creator | Reinsdorf, Marshall B. Diewert, W. Erwin Ehemann, Christian |
description | Users of a price or quantity index often want to know how much each item in the index contributes to its overall change. Consequently, statistical agencies generally publish items' contributions to changes in the indexes that they publish. For fixed basket index formulas, calculating contributions to index change that add up to the correct total is straightforward, but for Fisher, Törnqvist and geometric mean index formulas -- which statistical agencies are beginning to use -- it is not. We use economic and axiomatic approaches to derive additive decompositions of the change in a Fisher index, and we use an axiomatic approach to derive an additive decomposition of the change in a Törnqvist or geometric mean index. |
doi_str_mv | 10.3233/JEM-2003-0194 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38431186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3233_JEM-2003-0194</sage_id><sourcerecordid>38431186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-be622e9f417f6a014ad2c3c42ae452795a1a225783c4e971ebace187ec476f303</originalsourceid><addsrcrecordid>eNptkM1KAzEURoMoWKtL98GFCzGav5nMLEtptVJxU9chzdypKZ1Jm0yLvpgv4IuZUhciri7f5fBx70HoktE7wYW4fxo9E06pIJSV8gj1WKEyUpSCH6MeVVKRMs_5KTqLcUkpE5yrHpoMqsp1bge4AuubtY8p-Tbi2gc8dvENwi2efX2GdrNzscOmrfACfANdcBY3YFrs2greIZ6jk9qsIlz8zD56HY9mw0cyfXmYDAdTYgXNOjKHnHMoa8lUnRvKpKm4FVZyAzLjqswMM5xnqkg7KBWDubGQPgErVV4LKvro-tC7Dn6zhdjpxkULq5VpwW-jFoUUjBV5Aq_-gEu_DW26TbMyY7LkkieIHCAbfIwBar0OrjHhQzOq91Z1sqr3VvXeauJvDnw0C_hV-C_8DUHOdyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195149242</pqid></control><display><type>article</type><title>Additive decompositions for Fisher, Törnqvist and geometric mean indexes</title><source>Business Source Complete</source><source>Sociological Abstracts</source><creator>Reinsdorf, Marshall B. ; Diewert, W. Erwin ; Ehemann, Christian</creator><creatorcontrib>Reinsdorf, Marshall B. ; Diewert, W. Erwin ; Ehemann, Christian</creatorcontrib><description>Users of a price or quantity index often want to know how much each item in the index contributes to its overall change. Consequently, statistical agencies generally publish items' contributions to changes in the indexes that they publish. For fixed basket index formulas, calculating contributions to index change that add up to the correct total is straightforward, but for Fisher, Törnqvist and geometric mean index formulas -- which statistical agencies are beginning to use -- it is not. We use economic and axiomatic approaches to derive additive decompositions of the change in a Fisher index, and we use an axiomatic approach to derive an additive decomposition of the change in a Törnqvist or geometric mean index.</description><identifier>ISSN: 0747-9662</identifier><identifier>EISSN: 1875-8932</identifier><identifier>EISSN: 2523-5338</identifier><identifier>DOI: 10.3233/JEM-2003-0194</identifier><identifier>CODEN: JEMEEZ</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Economic statistics ; Economics ; Index numbers ; Methodology ; Price index ; Price indexation ; Price indexes ; Statistical analysis</subject><ispartof>Journal of economic and social measurement, 2002, Vol.28 (1-2), p.51-61</ispartof><rights>IOS Press. All rights reserved</rights><rights>Copyright IOS Press 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-be622e9f417f6a014ad2c3c42ae452795a1a225783c4e971ebace187ec476f303</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902,33751</link.rule.ids></links><search><creatorcontrib>Reinsdorf, Marshall B.</creatorcontrib><creatorcontrib>Diewert, W. Erwin</creatorcontrib><creatorcontrib>Ehemann, Christian</creatorcontrib><title>Additive decompositions for Fisher, Törnqvist and geometric mean indexes</title><title>Journal of economic and social measurement</title><description>Users of a price or quantity index often want to know how much each item in the index contributes to its overall change. Consequently, statistical agencies generally publish items' contributions to changes in the indexes that they publish. For fixed basket index formulas, calculating contributions to index change that add up to the correct total is straightforward, but for Fisher, Törnqvist and geometric mean index formulas -- which statistical agencies are beginning to use -- it is not. We use economic and axiomatic approaches to derive additive decompositions of the change in a Fisher index, and we use an axiomatic approach to derive an additive decomposition of the change in a Törnqvist or geometric mean index.</description><subject>Economic statistics</subject><subject>Economics</subject><subject>Index numbers</subject><subject>Methodology</subject><subject>Price index</subject><subject>Price indexation</subject><subject>Price indexes</subject><subject>Statistical analysis</subject><issn>0747-9662</issn><issn>1875-8932</issn><issn>2523-5338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNptkM1KAzEURoMoWKtL98GFCzGav5nMLEtptVJxU9chzdypKZ1Jm0yLvpgv4IuZUhciri7f5fBx70HoktE7wYW4fxo9E06pIJSV8gj1WKEyUpSCH6MeVVKRMs_5KTqLcUkpE5yrHpoMqsp1bge4AuubtY8p-Tbi2gc8dvENwi2efX2GdrNzscOmrfACfANdcBY3YFrs2greIZ6jk9qsIlz8zD56HY9mw0cyfXmYDAdTYgXNOjKHnHMoa8lUnRvKpKm4FVZyAzLjqswMM5xnqkg7KBWDubGQPgErVV4LKvro-tC7Dn6zhdjpxkULq5VpwW-jFoUUjBV5Aq_-gEu_DW26TbMyY7LkkieIHCAbfIwBar0OrjHhQzOq91Z1sqr3VvXeauJvDnw0C_hV-C_8DUHOdyo</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Reinsdorf, Marshall B.</creator><creator>Diewert, W. Erwin</creator><creator>Ehemann, Christian</creator><general>SAGE Publications</general><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope></search><sort><creationdate>2002</creationdate><title>Additive decompositions for Fisher, Törnqvist and geometric mean indexes</title><author>Reinsdorf, Marshall B. ; Diewert, W. Erwin ; Ehemann, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-be622e9f417f6a014ad2c3c42ae452795a1a225783c4e971ebace187ec476f303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Economic statistics</topic><topic>Economics</topic><topic>Index numbers</topic><topic>Methodology</topic><topic>Price index</topic><topic>Price indexation</topic><topic>Price indexes</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinsdorf, Marshall B.</creatorcontrib><creatorcontrib>Diewert, W. Erwin</creatorcontrib><creatorcontrib>Ehemann, Christian</creatorcontrib><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Journal of economic and social measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinsdorf, Marshall B.</au><au>Diewert, W. Erwin</au><au>Ehemann, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive decompositions for Fisher, Törnqvist and geometric mean indexes</atitle><jtitle>Journal of economic and social measurement</jtitle><date>2002</date><risdate>2002</risdate><volume>28</volume><issue>1-2</issue><spage>51</spage><epage>61</epage><pages>51-61</pages><issn>0747-9662</issn><eissn>1875-8932</eissn><eissn>2523-5338</eissn><coden>JEMEEZ</coden><abstract>Users of a price or quantity index often want to know how much each item in the index contributes to its overall change. Consequently, statistical agencies generally publish items' contributions to changes in the indexes that they publish. For fixed basket index formulas, calculating contributions to index change that add up to the correct total is straightforward, but for Fisher, Törnqvist and geometric mean index formulas -- which statistical agencies are beginning to use -- it is not. We use economic and axiomatic approaches to derive additive decompositions of the change in a Fisher index, and we use an axiomatic approach to derive an additive decomposition of the change in a Törnqvist or geometric mean index.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.3233/JEM-2003-0194</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0747-9662 |
ispartof | Journal of economic and social measurement, 2002, Vol.28 (1-2), p.51-61 |
issn | 0747-9662 1875-8932 2523-5338 |
language | eng |
recordid | cdi_proquest_miscellaneous_38431186 |
source | Business Source Complete; Sociological Abstracts |
subjects | Economic statistics Economics Index numbers Methodology Price index Price indexation Price indexes Statistical analysis |
title | Additive decompositions for Fisher, Törnqvist and geometric mean indexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20decompositions%20for%20Fisher,%20T%C3%B6rnqvist%20and%20geometric%20mean%20indexes&rft.jtitle=Journal%20of%20economic%20and%20social%20measurement&rft.au=Reinsdorf,%20Marshall%20B.&rft.date=2002&rft.volume=28&rft.issue=1-2&rft.spage=51&rft.epage=61&rft.pages=51-61&rft.issn=0747-9662&rft.eissn=1875-8932&rft.coden=JEMEEZ&rft_id=info:doi/10.3233/JEM-2003-0194&rft_dat=%3Cproquest_cross%3E38431186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195149242&rft_id=info:pmid/&rft_sage_id=10.3233_JEM-2003-0194&rfr_iscdi=true |