Crop-Yield Distributions Revisited

This article revisits the issue of crop-yield distributions using improved model specifications, estimation, and testing procedures that address the concerns raised in recent literature, which could have invalidated previous findings of yield nonnormality. It concludes that some aggregate and farm-l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of agricultural economics 2003-02, Vol.85 (1), p.108-120
Hauptverfasser: Ramirez, Octavio A., Misra, Sukant, Field, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue 1
container_start_page 108
container_title American journal of agricultural economics
container_volume 85
creator Ramirez, Octavio A.
Misra, Sukant
Field, James
description This article revisits the issue of crop-yield distributions using improved model specifications, estimation, and testing procedures that address the concerns raised in recent literature, which could have invalidated previous findings of yield nonnormality. It concludes that some aggregate and farm-level yield distributions are nonnormal, kurtotic, and right or left skewed, depending on the circumstances. The advantages of utilizing nonnormal versus normal probability distribution function models, and the consequences of incorrectly assuming crop-yield normality are explored.
doi_str_mv 10.1111/1467-8276.00106
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_38429165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1244930</jstor_id><oup_id>10.1111/1467-8276.00106</oup_id><sourcerecordid>1244930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5496-c46b5bff5cd574eb47546735161448b7ecd77e8f2363750cd200837fa5c15d423</originalsourceid><addsrcrecordid>eNqFkc1LwzAYxoMoOKdnLx7GDh6EbPls2osw5twcguAHqJfQpilkdmtNWnX_vanViSKYS8j7_p7nfXkCwCFGA-zPELNAwJCIYIAQRsEW6Gwq26CDECIwQhHZBXvOLfwT4SjsgP7YFiV8MDpPe2fGVdYkdWWKletd6xfjTKXTfbCTxbnTB593F9ydT27HM3h5Nb0Yjy6h4iwKoGJBwpMs4yrlgumECe7nU44DzFiYCK1SIXSYERpQwZFKCUIhFVnMFeYpI7QLjlvf0hbPtXaVXBqndJ7HK13UTtKQkQgH3IP9X-CiqO3K7yYJpVhQJkIPDVtI2cI5qzNZWrOM7VpiJJvAZBOPbOKRH4F5xWmreDW5Xv-Hy9F8NGlqTenL4KQ1KOryTzn8Me2ohReuKuw3ThiLKPJt2Lb9n-i3TTu2T9KHKric3T_KaEbRHE2JvKHvUSKQHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233173478</pqid></control><display><type>article</type><title>Crop-Yield Distributions Revisited</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Ramirez, Octavio A. ; Misra, Sukant ; Field, James</creator><creatorcontrib>Ramirez, Octavio A. ; Misra, Sukant ; Field, James</creatorcontrib><description>This article revisits the issue of crop-yield distributions using improved model specifications, estimation, and testing procedures that address the concerns raised in recent literature, which could have invalidated previous findings of yield nonnormality. It concludes that some aggregate and farm-level yield distributions are nonnormal, kurtotic, and right or left skewed, depending on the circumstances. The advantages of utilizing nonnormal versus normal probability distribution function models, and the consequences of incorrectly assuming crop-yield normality are explored.</description><identifier>ISSN: 0002-9092</identifier><identifier>EISSN: 1467-8276</identifier><identifier>DOI: 10.1111/1467-8276.00106</identifier><identifier>CODEN: AJAEBA</identifier><language>eng</language><publisher>Malden: Oxford University Press</publisher><subject>Agricultural economics ; Agricultural production ; Agriculture ; Arid zones ; Corn Belt ; Cotton ; Crop insurance ; Crop yield ; crop-yields ; Crops ; Distribution ; Dryland farming ; Economics ; Expected utility ; Mathematical methods ; Modeling ; nonnormality ; Parametric models ; Probability ; probability distributions ; Q120 ; Random variables ; Simulations ; Skewed distribution ; Skewness ; Soybeans ; Statistical significance ; Texas ; Texas cotton ; U.S.A</subject><ispartof>American journal of agricultural economics, 2003-02, Vol.85 (1), p.108-120</ispartof><rights>Copyright 2003 American Agricultural Economics Association</rights><rights>Copyright 2003 American Agricultural Economics Association 2003</rights><rights>2003 Agricultural and Applied Economics Association</rights><rights>Copyright Blackwell Publishers Inc. Feb 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5496-c46b5bff5cd574eb47546735161448b7ecd77e8f2363750cd200837fa5c15d423</citedby><cites>FETCH-LOGICAL-c5496-c46b5bff5cd574eb47546735161448b7ecd77e8f2363750cd200837fa5c15d423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1244930$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1244930$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Ramirez, Octavio A.</creatorcontrib><creatorcontrib>Misra, Sukant</creatorcontrib><creatorcontrib>Field, James</creatorcontrib><title>Crop-Yield Distributions Revisited</title><title>American journal of agricultural economics</title><addtitle>American Journal of Agricultural Economics</addtitle><addtitle>American Journal of Agricultural Economics</addtitle><description>This article revisits the issue of crop-yield distributions using improved model specifications, estimation, and testing procedures that address the concerns raised in recent literature, which could have invalidated previous findings of yield nonnormality. It concludes that some aggregate and farm-level yield distributions are nonnormal, kurtotic, and right or left skewed, depending on the circumstances. The advantages of utilizing nonnormal versus normal probability distribution function models, and the consequences of incorrectly assuming crop-yield normality are explored.</description><subject>Agricultural economics</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Arid zones</subject><subject>Corn Belt</subject><subject>Cotton</subject><subject>Crop insurance</subject><subject>Crop yield</subject><subject>crop-yields</subject><subject>Crops</subject><subject>Distribution</subject><subject>Dryland farming</subject><subject>Economics</subject><subject>Expected utility</subject><subject>Mathematical methods</subject><subject>Modeling</subject><subject>nonnormality</subject><subject>Parametric models</subject><subject>Probability</subject><subject>probability distributions</subject><subject>Q120</subject><subject>Random variables</subject><subject>Simulations</subject><subject>Skewed distribution</subject><subject>Skewness</subject><subject>Soybeans</subject><subject>Statistical significance</subject><subject>Texas</subject><subject>Texas cotton</subject><subject>U.S.A</subject><issn>0002-9092</issn><issn>1467-8276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LwzAYxoMoOKdnLx7GDh6EbPls2osw5twcguAHqJfQpilkdmtNWnX_vanViSKYS8j7_p7nfXkCwCFGA-zPELNAwJCIYIAQRsEW6Gwq26CDECIwQhHZBXvOLfwT4SjsgP7YFiV8MDpPe2fGVdYkdWWKletd6xfjTKXTfbCTxbnTB593F9ydT27HM3h5Nb0Yjy6h4iwKoGJBwpMs4yrlgumECe7nU44DzFiYCK1SIXSYERpQwZFKCUIhFVnMFeYpI7QLjlvf0hbPtXaVXBqndJ7HK13UTtKQkQgH3IP9X-CiqO3K7yYJpVhQJkIPDVtI2cI5qzNZWrOM7VpiJJvAZBOPbOKRH4F5xWmreDW5Xv-Hy9F8NGlqTenL4KQ1KOryTzn8Me2ohReuKuw3ThiLKPJt2Lb9n-i3TTu2T9KHKric3T_KaEbRHE2JvKHvUSKQHQ</recordid><startdate>200302</startdate><enddate>200302</enddate><creator>Ramirez, Octavio A.</creator><creator>Misra, Sukant</creator><creator>Field, James</creator><general>Oxford University Press</general><general>Blackwell Publishing</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope></search><sort><creationdate>200302</creationdate><title>Crop-Yield Distributions Revisited</title><author>Ramirez, Octavio A. ; Misra, Sukant ; Field, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5496-c46b5bff5cd574eb47546735161448b7ecd77e8f2363750cd200837fa5c15d423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Agricultural economics</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Arid zones</topic><topic>Corn Belt</topic><topic>Cotton</topic><topic>Crop insurance</topic><topic>Crop yield</topic><topic>crop-yields</topic><topic>Crops</topic><topic>Distribution</topic><topic>Dryland farming</topic><topic>Economics</topic><topic>Expected utility</topic><topic>Mathematical methods</topic><topic>Modeling</topic><topic>nonnormality</topic><topic>Parametric models</topic><topic>Probability</topic><topic>probability distributions</topic><topic>Q120</topic><topic>Random variables</topic><topic>Simulations</topic><topic>Skewed distribution</topic><topic>Skewness</topic><topic>Soybeans</topic><topic>Statistical significance</topic><topic>Texas</topic><topic>Texas cotton</topic><topic>U.S.A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez, Octavio A.</creatorcontrib><creatorcontrib>Misra, Sukant</creatorcontrib><creatorcontrib>Field, James</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>American journal of agricultural economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramirez, Octavio A.</au><au>Misra, Sukant</au><au>Field, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crop-Yield Distributions Revisited</atitle><jtitle>American journal of agricultural economics</jtitle><stitle>American Journal of Agricultural Economics</stitle><addtitle>American Journal of Agricultural Economics</addtitle><date>2003-02</date><risdate>2003</risdate><volume>85</volume><issue>1</issue><spage>108</spage><epage>120</epage><pages>108-120</pages><issn>0002-9092</issn><eissn>1467-8276</eissn><coden>AJAEBA</coden><abstract>This article revisits the issue of crop-yield distributions using improved model specifications, estimation, and testing procedures that address the concerns raised in recent literature, which could have invalidated previous findings of yield nonnormality. It concludes that some aggregate and farm-level yield distributions are nonnormal, kurtotic, and right or left skewed, depending on the circumstances. The advantages of utilizing nonnormal versus normal probability distribution function models, and the consequences of incorrectly assuming crop-yield normality are explored.</abstract><cop>Malden</cop><pub>Oxford University Press</pub><doi>10.1111/1467-8276.00106</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9092
ispartof American journal of agricultural economics, 2003-02, Vol.85 (1), p.108-120
issn 0002-9092
1467-8276
language eng
recordid cdi_proquest_miscellaneous_38429165
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Agricultural economics
Agricultural production
Agriculture
Arid zones
Corn Belt
Cotton
Crop insurance
Crop yield
crop-yields
Crops
Distribution
Dryland farming
Economics
Expected utility
Mathematical methods
Modeling
nonnormality
Parametric models
Probability
probability distributions
Q120
Random variables
Simulations
Skewed distribution
Skewness
Soybeans
Statistical significance
Texas
Texas cotton
U.S.A
title Crop-Yield Distributions Revisited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crop-Yield%20Distributions%20Revisited&rft.jtitle=American%20journal%20of%20agricultural%20economics&rft.au=Ramirez,%20Octavio%20A.&rft.date=2003-02&rft.volume=85&rft.issue=1&rft.spage=108&rft.epage=120&rft.pages=108-120&rft.issn=0002-9092&rft.eissn=1467-8276&rft.coden=AJAEBA&rft_id=info:doi/10.1111/1467-8276.00106&rft_dat=%3Cjstor_proqu%3E1244930%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233173478&rft_id=info:pmid/&rft_jstor_id=1244930&rft_oup_id=10.1111/1467-8276.00106&rfr_iscdi=true