An ordinal selection of stable sets in the sense of Hillas

In this paper, it is shown in an example that the original definition of stable sets in Hillas [Econometrica 58 (1990) 1365–1391] does not satisfy (an even slightly weakenened version of) the invariance condition proposed in Mertens [Ordinality in noncooperative games, Core Discussion Paper 8728, CO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical economics 2001-11, Vol.36 (2), p.161-167
Hauptverfasser: Vermeulen, A.J., Jansen, M.J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 2
container_start_page 161
container_title Journal of mathematical economics
container_volume 36
creator Vermeulen, A.J.
Jansen, M.J.M.
description In this paper, it is shown in an example that the original definition of stable sets in Hillas [Econometrica 58 (1990) 1365–1391] does not satisfy (an even slightly weakenened version of) the invariance condition proposed in Mertens [Ordinality in noncooperative games, Core Discussion Paper 8728, CORE Louvain de la Neuve, Belgium, 1987]. However, it is also shown that the basic stability condition of Hillas underlying his definition of stable sets does admit a selection that is invariant in the strong sense, and even ordinal.
doi_str_mv 10.1016/S0304-4068(01)00073-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38311049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304406801000738</els_id><sourcerecordid>38311049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-14f52f020160426ba2d336bfa0f7e79a82955cef2f6b93421808a67032a888cd3</originalsourceid><addsrcrecordid>eNqFUU1P3DAQtaoidbv0J1SKOKByCIztxHG4IIRaPoTEgfY88jpjYZRNFjuLxL9nwiIOvXB49mj83tPMsxA_JRxLkObkHjRUZQXG_gJ5BACNLu0XsZCWC1lr-1UsPijfxPecH2dSA3YhTs-HYkxdHFxfZOrJT3HkTijy5FY9cW_KRRyK6WGuh0zz21Xse5f3xV5wfaYf7_dS_Pvz--_FVXl7d3l9cX5b-sq2UymrUKsAiieFSpmVU53WZhUchIaa1lnV1rWnoIJZtbpS0oJ1pgGtnLXWd3opDne-mzQ-bSlPuI7ZE48w0LjNqK2WEqqWiQf_ER_HbeLNMipleeGKw1iKekfyacw5UcBNimuXXlACznHiW5w4Z4Ug8S1OtKy72ekSbch_iIho7SbyIz6jdtrw8cJQwFLt4lwyNgxpJErT4MO0ZrOznRlxbs-REmYfafDUxcRfgN0YPxnnFdEkkm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228077415</pqid></control><display><type>article</type><title>An ordinal selection of stable sets in the sense of Hillas</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Vermeulen, A.J. ; Jansen, M.J.M.</creator><creatorcontrib>Vermeulen, A.J. ; Jansen, M.J.M.</creatorcontrib><description>In this paper, it is shown in an example that the original definition of stable sets in Hillas [Econometrica 58 (1990) 1365–1391] does not satisfy (an even slightly weakenened version of) the invariance condition proposed in Mertens [Ordinality in noncooperative games, Core Discussion Paper 8728, CORE Louvain de la Neuve, Belgium, 1987]. However, it is also shown that the basic stability condition of Hillas underlying his definition of stable sets does admit a selection that is invariant in the strong sense, and even ordinal.</description><identifier>ISSN: 0304-4068</identifier><identifier>EISSN: 1873-1538</identifier><identifier>DOI: 10.1016/S0304-4068(01)00073-8</identifier><identifier>CODEN: JMECDA</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Economic theory ; Economics ; Game theory ; Games ; Invariance ; Mathematical models ; Stable sets</subject><ispartof>Journal of mathematical economics, 2001-11, Vol.36 (2), p.161-167</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c489t-14f52f020160426ba2d336bfa0f7e79a82955cef2f6b93421808a67032a888cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-4068(01)00073-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,3994,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeemateco/v_3a36_3ay_3a2001_3ai_3a2_3ap_3a161-167.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Vermeulen, A.J.</creatorcontrib><creatorcontrib>Jansen, M.J.M.</creatorcontrib><title>An ordinal selection of stable sets in the sense of Hillas</title><title>Journal of mathematical economics</title><description>In this paper, it is shown in an example that the original definition of stable sets in Hillas [Econometrica 58 (1990) 1365–1391] does not satisfy (an even slightly weakenened version of) the invariance condition proposed in Mertens [Ordinality in noncooperative games, Core Discussion Paper 8728, CORE Louvain de la Neuve, Belgium, 1987]. However, it is also shown that the basic stability condition of Hillas underlying his definition of stable sets does admit a selection that is invariant in the strong sense, and even ordinal.</description><subject>Economic theory</subject><subject>Economics</subject><subject>Game theory</subject><subject>Games</subject><subject>Invariance</subject><subject>Mathematical models</subject><subject>Stable sets</subject><issn>0304-4068</issn><issn>1873-1538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUU1P3DAQtaoidbv0J1SKOKByCIztxHG4IIRaPoTEgfY88jpjYZRNFjuLxL9nwiIOvXB49mj83tPMsxA_JRxLkObkHjRUZQXG_gJ5BACNLu0XsZCWC1lr-1UsPijfxPecH2dSA3YhTs-HYkxdHFxfZOrJT3HkTijy5FY9cW_KRRyK6WGuh0zz21Xse5f3xV5wfaYf7_dS_Pvz--_FVXl7d3l9cX5b-sq2UymrUKsAiieFSpmVU53WZhUchIaa1lnV1rWnoIJZtbpS0oJ1pgGtnLXWd3opDne-mzQ-bSlPuI7ZE48w0LjNqK2WEqqWiQf_ER_HbeLNMipleeGKw1iKekfyacw5UcBNimuXXlACznHiW5w4Z4Ug8S1OtKy72ekSbch_iIho7SbyIz6jdtrw8cJQwFLt4lwyNgxpJErT4MO0ZrOznRlxbs-REmYfafDUxcRfgN0YPxnnFdEkkm4</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Vermeulen, A.J.</creator><creator>Jansen, M.J.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20011101</creationdate><title>An ordinal selection of stable sets in the sense of Hillas</title><author>Vermeulen, A.J. ; Jansen, M.J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-14f52f020160426ba2d336bfa0f7e79a82955cef2f6b93421808a67032a888cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Economic theory</topic><topic>Economics</topic><topic>Game theory</topic><topic>Games</topic><topic>Invariance</topic><topic>Mathematical models</topic><topic>Stable sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vermeulen, A.J.</creatorcontrib><creatorcontrib>Jansen, M.J.M.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of mathematical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vermeulen, A.J.</au><au>Jansen, M.J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ordinal selection of stable sets in the sense of Hillas</atitle><jtitle>Journal of mathematical economics</jtitle><date>2001-11-01</date><risdate>2001</risdate><volume>36</volume><issue>2</issue><spage>161</spage><epage>167</epage><pages>161-167</pages><issn>0304-4068</issn><eissn>1873-1538</eissn><coden>JMECDA</coden><abstract>In this paper, it is shown in an example that the original definition of stable sets in Hillas [Econometrica 58 (1990) 1365–1391] does not satisfy (an even slightly weakenened version of) the invariance condition proposed in Mertens [Ordinality in noncooperative games, Core Discussion Paper 8728, CORE Louvain de la Neuve, Belgium, 1987]. However, it is also shown that the basic stability condition of Hillas underlying his definition of stable sets does admit a selection that is invariant in the strong sense, and even ordinal.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-4068(01)00073-8</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4068
ispartof Journal of mathematical economics, 2001-11, Vol.36 (2), p.161-167
issn 0304-4068
1873-1538
language eng
recordid cdi_proquest_miscellaneous_38311049
source RePEc; Elsevier ScienceDirect Journals
subjects Economic theory
Economics
Game theory
Games
Invariance
Mathematical models
Stable sets
title An ordinal selection of stable sets in the sense of Hillas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ordinal%20selection%20of%20stable%20sets%20in%20the%20sense%20of%20Hillas&rft.jtitle=Journal%20of%20mathematical%20economics&rft.au=Vermeulen,%20A.J.&rft.date=2001-11-01&rft.volume=36&rft.issue=2&rft.spage=161&rft.epage=167&rft.pages=161-167&rft.issn=0304-4068&rft.eissn=1873-1538&rft.coden=JMECDA&rft_id=info:doi/10.1016/S0304-4068(01)00073-8&rft_dat=%3Cproquest_cross%3E38311049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228077415&rft_id=info:pmid/&rft_els_id=S0304406801000738&rfr_iscdi=true