A generalized bivariate mixture model for stock price volatility and trading volume
In the standard bivariate mixture model, the number of information arrivals which is typically modeled as a serially correlated random variable, determines the dynamics of stock price volatility and trading volume. An important limitation of this model is the assumption that the traders’ sensitivity...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2001-08, Vol.104 (1), p.141-178 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 178 |
---|---|
container_issue | 1 |
container_start_page | 141 |
container_title | Journal of econometrics |
container_volume | 104 |
creator | Liesenfeld, Roman |
description | In the standard bivariate mixture model, the number of information arrivals which is typically modeled as a serially correlated random variable, determines the dynamics of stock price volatility and trading volume. An important limitation of this model is the assumption that the traders’ sensitivity to new information is constant over time, implying that every piece of information is treated alike. In this paper, I allow the latent number of information arrivals as well as the latent sensitivity to new information to be serially correlated random variables each endowed with their own dynamic behavior. In the resulting generalized mixture model, the behavior of volatility and volume results from the simultaneous interaction of the number of information arrivals and traders’ sensitivity to new information. The empirical results based on daily data for the IBM and Kodak stock reveals that the generalized mixture model improves the explanation of the behavior of volatility relative to the standard model. Furthermore, the short-run volatility dynamics are directed by the information arrival process, whereas the long-run dynamics are associated with the sensitivity to new information. Finally, the variation of the sensitivity to news is largely irrelevant for the behavior of trading volume which is mainly determined by the variation of the number of information arrivals. |
doi_str_mv | 10.1016/S0304-4076(01)00062-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_38266839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407601000628</els_id><sourcerecordid>38266839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-22a06015f63cd5eef0baeef6ea2cd0c7f5cf2225854fa657b84dfd1aef1401023</originalsourceid><addsrcrecordid>eNqFkNFrFDEQxhdR8Kz-CcIiIvZhdZLdZHNPUoqtYqEP1ecwl0xq6u7mTLKH51_fbK9U8KWBycDw-4Zvvqp6zeADAyY_XkELXdNBL98DOwYAyRv1pFox1fNGqrV4Wq0ekOfVi5RuCiQ61a6qq5P6miaKOPi_ZOuN32H0mKke_Z88x9KDpaF2IdYpB_Or3kZvqN6FAbMffN7XONk6R7R-ul7G80gvq2cOh0Sv7vtR9ePs8_fTL83F5fnX05OLxohe5oZzBAlMONkaK4gcbLD8kpAbC6Z3wjjOuVCicyhFv1GddZYhOdYBA94eVe8Oe7cx_J4pZT36ZGgYcKIwJ90qLqVq1wV88x94E-Y4FW-araUUUvULJA6QiSGlSE6XU0eMe81ALznru5z1EqIGpu9y1qrovh10kbZkHkRUnglTGPVOt8iKsMV9KQ5F26JfhqW2S--YZr3SP_NYtr29t4rJ4OAiTsanf1YYKLmGgn06YFTy3XmKOhlPkyHrI5msbfCP2L4Fe3KrYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196656879</pqid></control><display><type>article</type><title>A generalized bivariate mixture model for stock price volatility and trading volume</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Liesenfeld, Roman</creator><creatorcontrib>Liesenfeld, Roman</creatorcontrib><description>In the standard bivariate mixture model, the number of information arrivals which is typically modeled as a serially correlated random variable, determines the dynamics of stock price volatility and trading volume. An important limitation of this model is the assumption that the traders’ sensitivity to new information is constant over time, implying that every piece of information is treated alike. In this paper, I allow the latent number of information arrivals as well as the latent sensitivity to new information to be serially correlated random variables each endowed with their own dynamic behavior. In the resulting generalized mixture model, the behavior of volatility and volume results from the simultaneous interaction of the number of information arrivals and traders’ sensitivity to new information. The empirical results based on daily data for the IBM and Kodak stock reveals that the generalized mixture model improves the explanation of the behavior of volatility relative to the standard model. Furthermore, the short-run volatility dynamics are directed by the information arrival process, whereas the long-run dynamics are associated with the sensitivity to new information. Finally, the variation of the sensitivity to news is largely irrelevant for the behavior of trading volume which is mainly determined by the variation of the number of information arrivals.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/S0304-4076(01)00062-8</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Correlation ; Dynamic models ; Econometrics ; Economic models ; Exact sciences and technology ; Latent dynamic variables ; Leverage effect ; Mathematical economics ; Mathematical foundations ; Mathematics ; Operational research and scientific management ; Operational research. Management science ; Portfolio theory ; Probability ; Probability and statistics ; Random variables ; Sciences and techniques of general use ; Short- and long-run volatility components ; Simulated maximum likelihood ; Simulation ; Statistics ; Stock prices ; Studies ; Variance analysis ; Volatility ; Volatility persistence</subject><ispartof>Journal of econometrics, 2001-08, Vol.104 (1), p.141-178</ispartof><rights>2001 Elsevier Science S.A.</rights><rights>2001 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Aug 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-22a06015f63cd5eef0baeef6ea2cd0c7f5cf2225854fa657b84dfd1aef1401023</citedby><cites>FETCH-LOGICAL-c576t-22a06015f63cd5eef0baeef6ea2cd0c7f5cf2225854fa657b84dfd1aef1401023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-4076(01)00062-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,3996,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1108690$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a104_3ay_3a2001_3ai_3a1_3ap_3a141-178.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Liesenfeld, Roman</creatorcontrib><title>A generalized bivariate mixture model for stock price volatility and trading volume</title><title>Journal of econometrics</title><description>In the standard bivariate mixture model, the number of information arrivals which is typically modeled as a serially correlated random variable, determines the dynamics of stock price volatility and trading volume. An important limitation of this model is the assumption that the traders’ sensitivity to new information is constant over time, implying that every piece of information is treated alike. In this paper, I allow the latent number of information arrivals as well as the latent sensitivity to new information to be serially correlated random variables each endowed with their own dynamic behavior. In the resulting generalized mixture model, the behavior of volatility and volume results from the simultaneous interaction of the number of information arrivals and traders’ sensitivity to new information. The empirical results based on daily data for the IBM and Kodak stock reveals that the generalized mixture model improves the explanation of the behavior of volatility relative to the standard model. Furthermore, the short-run volatility dynamics are directed by the information arrival process, whereas the long-run dynamics are associated with the sensitivity to new information. Finally, the variation of the sensitivity to news is largely irrelevant for the behavior of trading volume which is mainly determined by the variation of the number of information arrivals.</description><subject>Applied sciences</subject><subject>Correlation</subject><subject>Dynamic models</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Exact sciences and technology</subject><subject>Latent dynamic variables</subject><subject>Leverage effect</subject><subject>Mathematical economics</subject><subject>Mathematical foundations</subject><subject>Mathematics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Portfolio theory</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Short- and long-run volatility components</subject><subject>Simulated maximum likelihood</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Stock prices</subject><subject>Studies</subject><subject>Variance analysis</subject><subject>Volatility</subject><subject>Volatility persistence</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkNFrFDEQxhdR8Kz-CcIiIvZhdZLdZHNPUoqtYqEP1ecwl0xq6u7mTLKH51_fbK9U8KWBycDw-4Zvvqp6zeADAyY_XkELXdNBL98DOwYAyRv1pFox1fNGqrV4Wq0ekOfVi5RuCiQ61a6qq5P6miaKOPi_ZOuN32H0mKke_Z88x9KDpaF2IdYpB_Or3kZvqN6FAbMffN7XONk6R7R-ul7G80gvq2cOh0Sv7vtR9ePs8_fTL83F5fnX05OLxohe5oZzBAlMONkaK4gcbLD8kpAbC6Z3wjjOuVCicyhFv1GddZYhOdYBA94eVe8Oe7cx_J4pZT36ZGgYcKIwJ90qLqVq1wV88x94E-Y4FW-araUUUvULJA6QiSGlSE6XU0eMe81ALznru5z1EqIGpu9y1qrovh10kbZkHkRUnglTGPVOt8iKsMV9KQ5F26JfhqW2S--YZr3SP_NYtr29t4rJ4OAiTsanf1YYKLmGgn06YFTy3XmKOhlPkyHrI5msbfCP2L4Fe3KrYQ</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Liesenfeld, Roman</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20010801</creationdate><title>A generalized bivariate mixture model for stock price volatility and trading volume</title><author>Liesenfeld, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-22a06015f63cd5eef0baeef6ea2cd0c7f5cf2225854fa657b84dfd1aef1401023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Correlation</topic><topic>Dynamic models</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Exact sciences and technology</topic><topic>Latent dynamic variables</topic><topic>Leverage effect</topic><topic>Mathematical economics</topic><topic>Mathematical foundations</topic><topic>Mathematics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Portfolio theory</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Short- and long-run volatility components</topic><topic>Simulated maximum likelihood</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Stock prices</topic><topic>Studies</topic><topic>Variance analysis</topic><topic>Volatility</topic><topic>Volatility persistence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liesenfeld, Roman</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liesenfeld, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized bivariate mixture model for stock price volatility and trading volume</atitle><jtitle>Journal of econometrics</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>104</volume><issue>1</issue><spage>141</spage><epage>178</epage><pages>141-178</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>In the standard bivariate mixture model, the number of information arrivals which is typically modeled as a serially correlated random variable, determines the dynamics of stock price volatility and trading volume. An important limitation of this model is the assumption that the traders’ sensitivity to new information is constant over time, implying that every piece of information is treated alike. In this paper, I allow the latent number of information arrivals as well as the latent sensitivity to new information to be serially correlated random variables each endowed with their own dynamic behavior. In the resulting generalized mixture model, the behavior of volatility and volume results from the simultaneous interaction of the number of information arrivals and traders’ sensitivity to new information. The empirical results based on daily data for the IBM and Kodak stock reveals that the generalized mixture model improves the explanation of the behavior of volatility relative to the standard model. Furthermore, the short-run volatility dynamics are directed by the information arrival process, whereas the long-run dynamics are associated with the sensitivity to new information. Finally, the variation of the sensitivity to news is largely irrelevant for the behavior of trading volume which is mainly determined by the variation of the number of information arrivals.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-4076(01)00062-8</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2001-08, Vol.104 (1), p.141-178 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_miscellaneous_38266839 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Applied sciences Correlation Dynamic models Econometrics Economic models Exact sciences and technology Latent dynamic variables Leverage effect Mathematical economics Mathematical foundations Mathematics Operational research and scientific management Operational research. Management science Portfolio theory Probability Probability and statistics Random variables Sciences and techniques of general use Short- and long-run volatility components Simulated maximum likelihood Simulation Statistics Stock prices Studies Variance analysis Volatility Volatility persistence |
title | A generalized bivariate mixture model for stock price volatility and trading volume |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20bivariate%20mixture%20model%20for%20stock%20price%20volatility%20and%20trading%20volume&rft.jtitle=Journal%20of%20econometrics&rft.au=Liesenfeld,%20Roman&rft.date=2001-08-01&rft.volume=104&rft.issue=1&rft.spage=141&rft.epage=178&rft.pages=141-178&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/S0304-4076(01)00062-8&rft_dat=%3Cproquest_cross%3E38266839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196656879&rft_id=info:pmid/&rft_els_id=S0304407601000628&rfr_iscdi=true |